Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1430-3418
    Keywords: Chondrocyte volume measurements ; Chromodomain proteins ; Confocal fluorescence microscopy ; Glutathione conjugate pump ; Nuclear channels ; Quantitative imaging
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Confocal fluorescence microscopy enables visualisation and quantitation of fluorescent probes at high resolution deep within intact tissues, with minimal disturbance both of cell–cell interactions and the mechanical, ionic and physiological effects of the extracellular matrix. We illustrate the principles of multiple-parameter 3-D (x,y,z) imaging using reconstruction of nuclear channels in mammalian cells. Repeated sampling in time generates 4-D (x,y,z,t) images which can be used to follow dynamic changes, such as blue-light-dependent chloroplast re-orientation, in intact tissues. Quantitative measurements from multi-dimensional images require calibration of the spatial dimensions of the image and the fluorescence intensity response. This must be determined throughout the volume, which must be sampled to correct for geometric distortion as well as photometric errors arising from the complete optical system, including the specimen. The effects of specimen calibration are illustrated for morphological analysis of stomatal closing responses to abscisic acid in Commelina from 4-D images. Calibrated 4-D imaging allows direct volume measurements and we have followed volume regulation of chondrocytes in cartilage explants during osmotic perturbation. In intact cartilage, unlike in isolated cells, the chondrocytes exhibit volume regulatory mechanisms. In other cases, the fluorescence intensity of the probe may be related to a physiological parameter of interest and changes in its distribution within the cell. Optical sectioning permits discrimination of signal in separate compartments within the cell and can be used to follow transport events between different organelles. We illustrate 3-D (x,y,t) measurements of vacuolar glutathione conjugate pump activity in intact roots of Arabidopsis by following the sequestration of a fluorescent conjugate between glutathione and monochlorobimane. Dynamic measurements of protein localisation are now possible following the introduction of chimeric fusion proteins with green fluorescent protein (GFP) from Aequoria victoria. We have analysed the disposition of heterochromatin in nuclei of living Schizosaccharomyces pombe cells expressing a chimeric construct between Swi6 and GFP. Heterochromatin dynamics can be followed throughout mitosis in 4-D (x,y,z,t) images. Statistical analysis of the fluorescence histograms from each nucleus over time provides quantitative support for aggregation and dispersion of Swi6-GFP clusters during mitosis, rather than dissociation of Swi6 from the heterochromatin. A wide range of single-wavelength and ratio probes are available for imaging different ion activities. We compare 3-D (x,y,t) measurements of ion activities made using single-wavelength (Fluo-3 for calcium) and ratio (BCECF for pH) measurements, using stomatal responses in Vicia faba to peptides from the auxin-binding protein of maize and tip growth in pollen tubes of Lilium longiflorum as examples. Ratioing techniques have many advantages for quantitative fluorescence measurements and we conclude with a discussion of techniques to develop ratioing of single-wavelength probes against alternative references, such as DNA, protein or cell wall material.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Neurofilaments ; Phase transition ; Paired helical filaments ; Paracrystals ; Alzheimer's disease ; Squid (Loligo pealei L.) ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Using electron microscopy (EM), optical diffraction and image reconstruction techniques, we have demonstrated polymorphism of neurofilamentous network (NFN) in vitro based on phase transitions of the protein assemblies. The specific polymorphic appearances depended upon a number of factors, such as K +, Mg2 +, Ca2+ ions, as well as the charge and hydration state of the molecules. Furthermore, modifications initiated by the state of phosphorylation of the sidearm proteins played an important role, especially in determining the sidearm disposition of the NFN. The Ca2 +-activated protease removed the sidearms. Other enzymes activated by Ca2 + may initiate new association patterns of the peptide remnants and the intercoiling of two smooth neurofilaments (NFs) into paired helical filament-like (PHF-like) strands. Prolonged storage of the isolated NFs in Rubinson-Baker solution resulted in autocrosslinking and intercoiling of modified NFN components. The in vitro polymorphism and phase transitions of squid NFN induced under controlled conditions have been compared to modifications of cytoskeleton observed by EM in frontal lobe biopsies of Alzheimer patients. We conclude that similar processes, as induced in vitro, do occur in neurons of Alzheimer patients.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...