Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 28 (1995), S. 2460-2464 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Key wordsSchizosaccharomyces pombe ; SNF2/SWI2 protein family ; ATPase/helicase domains ; DNA-binding domain ; Chromodomain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The SNF2/SWI2 ATPase/helicase family comprises proteins from a variety of species, which serve a number of functions, such as transcriptional regulation, maintenance of chromosome stability during mitosis, and various types of DNA repair. Several proteins with unknown functions are also included in this family. The number of genes that belong to this family is rapidly expanding, which makes it easier to analyze the common biological functions of the family members. This study was designed to clone the SNF2/SWI2 helicase-related genes from the fission yeast Schizosaccharomyces pombe in the hope that this would help to elucidate the common functions of the proteins in this family. The hrp1 + (helicase-related gene from S. p ombe) gene was initially cloned by PCR amplification using degenerate primers based on conserved SNF2 motifs within the ERCC6 gene, which encodes a protein involved in DNA excision repair. The hrp1 + ORF codes for an 1373-amino acid polypeptide with a molecular mass of 159 kDa. Like other SNF2/SWI2 family proteins, the deduced amino acid sequence of Hrp1 contains DNA-dependent ATPase/7 helicase domains, as well as a chromodomain and a DNA-binding domain. This configuration is similar to that of mCHD1 (mouse chromo-ATPase/helicase-DNA-binding protein 1), suggesting that Hrp1 is a S. pombe homolog of mCHD1, which is thought to function in altering the chromatin structure to facilitate gene expression. Northern blot analysis showed that the hrp1 + gene produces a 4.6-kb transcript, which reaches its maximal level just before the cells enter the exponential growth phase, and then decreases gradually. DNA-damaging agents, such as MMS, MNNG and UV, decrease the rate of transcription of hrp1 +. Deletion of the hrp1 + gene resulted in accelerated cell growth. On the other hand, overexpression of Hrp1 caused a reduction in growth rate. These results indicate that hrp1 + may act as a negative regulator of cellular growth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1434-601X
    Keywords: 25.70.Np
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We report a preliminary measurement of coincident neutron-proton pairs emitted at 45° in the interaction of 400, 530, and 650 MeV/A neon beams incident on uranium. Charged particles were identified by time of flight and momentum, as determined in a magnetic spectrometer. Neutral particles were detected using a thick plastic scintillator, and their time of flight was measured between an entrance scintillator, triggered by a charged particle, and the neutron detector. The scatter plots and contour plots of neutron momentum vs. proton momentum appear to show a slight correlation ridge above an uncorrelated background. The projections of this plane on then-p momentum difference axis are essentially flat, showing a one standard deviation enhancement for each of the three beams energies. At each beam energy, the calculated momentum correlation function for the neutron-proton pairs is enhanced near zero neutron-proton momentum difference by approximately one standard deviation over the expected value for no correlation. This enhancement is expected to occur as a consequence of the attractive final state interaction between the neutron and proton (i.e., virtual or “singlet” deuterons). The implications of these measurements are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of polymers and the environment 6 (1998), S. 223-231 
    ISSN: 1572-8900
    Keywords: Degradable aliphatic polyester ; poly(tetramethylene succinate) ; morphology ; hydrolysis ; single crystals ; spherulites
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The morphological changes of Poly(tetramethylene succinate) single crystal lamellae by hydrolysis are investigated, using TEM, WAXD and SAXS. And the morphology of PTMS spherulites was also observed by optical microscopy after treatments as well as single crystal lamellae. The edge region of single crystal lamella can be most easily affected in the initial stage of hydrolysis. As the hydrolysis time increases, the lamellae are separated into small fragments which may be started from the uneven or irregular parts of the surface. The WAXD results showed that crystallinity were increased with increasing of treatment time. The lamellar thickness decreased at the initial stage of hydrolysis and increased again. There were cracks on the surface of spherulites after hydrolysis and the direction of cracks were tangential direction of spherulites. This result was thought to be from the uniformity of molecular arrangement in the crystallographic unit cell.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of polymers and the environment 7 (1999), S. 19-26 
    ISSN: 1572-8900
    Keywords: Poly(tetramethylene succinate) ; amorphous and crystalline orientation ; biodegradation ; morphology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The effect of orientation in the amorphous and crystalline regions on the biodegradability of PTMS [poly(tetramethylene succinate)] was studied using the amorphous orientation function, birefringence, and crystallinity. The crystalline and amorphous intrinsic lateral sonic moduli, E t,c 0 and E t,am 0 , were 2.61 × 103 and 0.41 × 103 MPa, respectively. Using the data on birefringence, crystalline and amorphous orientation function (f ∈ and f am), crystallinity, and sonic modulus of the oriented PTMS fibers, the intrinsic birefringence of the crystalline (Δ c 0 ) and amorphous (Δ am 0 ) regions were evaluated to be 0.0561 and 0.0634, respectively. The biodegradabilities of oriented PTMS films were reduced as the elongation increased, i.e., the amorphous orientation increased. At low elongation (100 and 150%), however, biodegradabilities remained unchanged when the degradation test was performed in activated sludge, which was attributed to the amorphous orientation occurring even at 100% elongation, though the amorphous orientation direction was perpendicular to the fiber axis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1617-4623
    Keywords: Schizosaccharomyces pombe ; DNA-damage inducibility ; Damage-responsive element ; Upstream activating sequence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract TheSchizosaccharomyces pombe rhp51 + gene encodes a recombinational repair protein that shares significant sequence identities with the bacterial RecA and theSaccharomyces cerevisiae RAD51 protein. Levels ofrhp51 + mRNA increase following several types of DNA damage or inhibition of DNA synthesis. Anrhp51::ura4 fusion gene was used to identify the cis-acting promoter elements involved in regulatingrhp51 + expression in response to DNA damage. Two elements, designated DRE1 and DRE2 (fordamage-responsiveelement), match a decamer consensus URS (upstream repressing sequence) found in the promoters of many other DNA repair and metabolism genes fromS. cerevisiae. However, our results show that DRE1 and DRE2 each function as a UAS (upstream activating sequence) rather than a URS and are also required for DNA-damage inducibility of the gene. A 20-bp fragment located downstream of both DRE1 and DRE2 is responsible for URS function. The DRE1 and DRE2 elements cross-competed for binding to two proteins of 45 and 59 kDa. DNase I footprint analysis suggests that DRE1 and DRE2 bind to the same DNA-binding proteins. These results suggest that the DRE-binding proteins may play an important role in the DNA-damage inducibility ofrhp51 + expression.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...