Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-2959
    Keywords: building downwash effect ; natural gas-fired combined-cycle power plants ; regulatory air quality modelling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract One of the primary adverse environmental impacts associated with power generation facilities and in particular thermal power plants is local air quality. When these plants are operated at inland areas the dry type cooling towers used may significantly increase ambient concentrations of air pollutants due to the building downwash effect. When one or more buildings in the vicinity of a point source interrupt wind flow, an area of turbulence known as a building wake is created. Pollutants emitted from relatively low level sources can be caught in this turbulence affecting their dispersion. In spite of the fact that natural gas-fired combined-cycle power plants have lower air emission levels compared to other power plants using alternative fossil fuel, they can still create significant local air pollution problems. In this paper, local air quality impacts of a natural gas-fired combined-cycle power plant located in a coastal area are compared with those of another natural gas-fired combined-cycle power plant having identical air emissions but located in an inland area taking into account differences in topography and meteorology. Additionally, a series of scenarios for the inland site have been envisaged to illustrate the importance of plant lay-out configurations paying particular attention to the building downwash effect. Model results showed that different geometrical configurations of the stacks and cooling towers will cause remarkable differences in ambient air pollutant concentrations; thus it is concluded that when selecting a plant site, a detailed site-specific investigation should be conducted in order to achieve the least possible ambient air pollution concentrations with the given emissions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 408-409 (1999), S. 139-144 
    ISSN: 1573-5117
    Keywords: eutrophication ; ecological modelling ; multiple regression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A research was made on the potential use of neural network based models in eutrophication modelling. As a result, an algorithm was developed to handle the practical aspects of designing, implementing and assessing the results of a neural network based model as a lake management tool. To illustrate the advantages and limitations of the neural network model, a case study was carried out to estimate the chlorophyll-aconcentration in Keban Dam Reservoir as a function of sampled water quality parameters (PO4phosphorus, NO3nitrogen, alkalinity, suspended solids concentration, pH, water temperature, electrical conductivity, dissolved oxygen concentration and Secchi depth) by a neural network based model. Alternatively, the same system was solved with a linear multiple regression model in order to compare the performances of the proposed neural network based model and the traditional linear multiple regression model. For both of the models, the linear correlation coefficients between the logarithms of observed and calculated chlorophyll-aconcentrations were calculated. The correlation coefficient R, the best linear fit between the observed and calculated values, was evaluated to assess the performances of the two models. R values of 0.74 and 0.71 were obtained for the neural network based model and the linear multiple regression model, respectively. The study showed that the neural network based model can be used to estimate chlorophyll-awith a performance similar to that of the traditional linear multiple regression method. However, for cases where the input and the output variables are not linearly correlated, neural network based models are expected to show a better performance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...