Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 80 (1997), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The strengths of ceramic fibers and whiskers have been observed to increase with decreasing fiber diameter and length. Typically, both surface flaws and volume flaws exist in ceramic fibers and whiskers, which makes it impossible to characterize the strength dependence of both the diameter and the length with a single-modal Weibull distribution function. Our data also show that the single-modal Weibull distribution is inadequate to characterize the strength of fibers with varying diameters even in the case of a constant fiber length. In addition, experimental data also show that, for sapphire whiskers whose surface flaws were removed by chemical polishing, the whisker strength has a much stronger size dependence on diameter than predicted by the single-modal Weibull function, which indicates that factors other than those characterized by the Weibull function also play a role in the strength of sapphire whiskers. In this paper, the factors affecting the strengths of ceramic fibers and whiskers are analyzed in terms of Weibull statistics, fracture mechanics, and flaw size density variation with varying fiber diameters. A three-parameter modified Weibull distribution, which combines the above strength-affecting factors, is proposed to characterize both the diameter and the length dependence for ceramic fibers and whiskers with or without surface flaws. Characterization of the strength data of sapphire whiskers and Nicalon SiC fibers with varying diameters shows the validity of the modified Weibull distribution function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 8 (1997), S. 543-549 
    ISSN: 1573-4838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Natural self-reinforced composite, bamboo, was surface modified by phosphorylation with urea–H3PO4 and NaOH–H3PO4 methods; then precalcification was performed by immersing samples in saturated Ca(OH)2 solution. After that, calcium phosphate can be formed on the surface of bamboo samples in calcification media: simulated body fluid (1.5 SBF) and accelerated calcification solution (ACS). Experimental results reveal that pre-calcification is an inevitable step for the formation of calcium phosphate. The calcium phosphate formed in 1.5 SBF was identified by thin-film X-ray diffraction as apatite which was not well crystallized. Compared with the urea–H3PO4 method, the NaOH–H3PO4 method has the advantages of quicker and continuous apatite formation and stronger adhesive between apatite and bamboo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 15 (1996), S. 1882-1885 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 14 (1995), S. 769-772 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...