Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Microbiology 58 (2004), S. 43-73 
    ISSN: 0066-4227
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: The natural production and anthropogenic release of halogenated hydrocarbons into the environment has been the likely driving force for the evolution of an unexpectedly high microbial capacity to dehalogenate different classes of xenobiotic haloorganics. This contribution provides an update on the current knowledge on metabolic and phylogenetic diversity of anaerobic microorganisms that are capable of dehalogenatingor completely mineralizinghalogenated hydrocarbons by fermentative, oxidative, or reductive pathways. In particular, research of the past decade has focused on halorespiring anaerobes, which couple the dehalogenation by dedicated enzyme systems to the generation of energy by electron transport-driven phosphorylation. Significant advances in the biochemistry and molecular genetics of degradation pathways have revealed mechanistic and structural similarities between dehalogenating enzymes from phylogenetically distinct anaerobes. The availability of two almost complete genome sequences of halorespiring isolates recently enabled comparative and functional genomics approaches, setting the stage for the further exploitation of halorespiring and other anaerobic dehalogenating microbes as dedicated degraders in biological remediation processes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Biosynthesis of gelatinase, a virulence factor of Enterococcus faecalis, was found to be regulated in a cell density-dependent fashion in which its production is active in late log to early stationary phase. Addition of early stationary phase culture filtrate to medium shifted the onset of gelatinase production to that of mid-log phase, suggesting that E. faecalis secretes a gelatinase biosynthesis-activating pheromone (GBAP). GBAP was isolated from culture supernatant of E. faecalis OG1S-P. Structural analysis suggested GBAP to be an 11-residue cyclic peptide containing a lactone structure, in which the α-carboxyl group of the C-terminal amino acid is linked to a hydroxyl group of the serine of the third residue. A synthetic peptide possessing the deduced structure showed GBAP activity at nanomolar concentrations as did natural GBAP. Database searches revealed that GBAP corresponds to a C-terminal part of a 242-residue FsrB protein. Northern analysis showed that GBAP slowly induces the transcription of two operons, fsrB-fsrC encoding FsrB and a putative histidine kinase FsrC and gelE-sprE encoding gelatinase GelE and serine protease SprE. Strains with an insertion mutation in either fsrC or a putative response regulator gene fsrA failed to respond to GBAP, suggesting that the GBAP signal is transduced by a two-component regulatory system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Lactococcus lactis ccpA gene, encoding the global regulatory protein CcpA, was identified and characterized. Northern blot and primer extension analyses showed that the L. lactis ccpA gene is constitutively transcribed from a promoter that does not contain a cre sequence. Inactivation of the ccpA gene resulted in a twofold reduction in the growth rate compared with the wild type on glucose, sucrose and fructose, while growth on galactose was almost completely abolished. The observed growth defects could be complemented by the expression of either the L. lactis or the Bacillus subtilis ccpA gene. The disruption of the ccpA gene reduced the catabolite repression of the gal operon, which contains a cre site at the transcription start site and encodes enzymes involved in galactose catabolism. In contrast, CcpA activates the transcription of the cre-containing promoter of the las operon, encoding the glycolytic enzymes phosphofructokinase, pyruvate kinase and L-lactate dehydrogenase, because its transcription level was fourfold reduced in the ccpA mutant strain compared with the wild-type strain. The lower activities of pyruvate kinase and L-lactate dehydrogenase in the ccpA mutant strain resulted in the production of metabolites characteristic of a mixed-acid fermentation, whereas the fermentation pattern of the wild-type strain was essentially homolactic.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Cell-density-dependent gene expression appears to be widely spread in bacteria. This quorum-sensing phenomenon has been well established in Gram-negative bacteria, where N-acyl homoserine lactones are the diffusible communication molecules that modulate cell-density-dependent phenotypes. Similarly, a variety of processes are known to be regulated in a cell-density- or growth-phase-dependent manner in Gram-positive bacteria. Examples of such quorum-sensing modes in Gram-positive bacteria are the development of genetic competence in Bacillus subtilis and Streptococcus pneumoniae, the virulence response in Staphylococcus aureus, and the production of antimicrobial peptides by several species of Gram-positive bacteria including lactic acid bacteria. Cell-density-dependent regulatory modes in these systems appear to follow a common theme, in which the signal molecule is a post-translationally processed peptide that is secreted by a dedicated ATP-binding-cassette exporter. This secreted peptide pheromone functions as the input signal for a specific sensor component of a two-component signal-transduction system. Moreover, genetic linkage of the common elements involved results in autoregulation of peptide-pheromone production.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Lactococcus lactis strain NIZO B40 produces an extracellular phosphopolysaccharide containing galactose, glucose, and rhamnose. A 40 kb plasmid encoding exopolysaccharide production was isolated through conjugal transfer of total plasmid DNA from strain NIZO B40 to the plasmid-free L. lactis model strain MG1614 and subsequent plasmid curing. A 12 kb region containing 14 genes with the order epsRXABCDEFGHIJKL was identified downstream of an iso-IS982 element. The predicted gene products of epsABCDEFGHIJK show sequence homologies with gene products involved in exopolysaccharide, capsular polysaccharide, lipopolysaccharide, or teichoic acid biosynthesis of other bacteria. Transcriptional analysis of the eps gene cluster revealed that the gene cluster is transcribed as a single 12 kb mRNA. The transcription start site of the promoter was mapped upstream of the first gene epsR. The involvement of epsD in exopolysaccharide (EPS) biosynthesis was demonstrated through a single gene disruption rendering an exopolysaccharide-deficient phenotype. Heterologous expression of epsD in Escherichia coli showed that its gene product is a glucosyltransferase linking the first sugar of the repeating unit to the lipid carrier.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 48 (2003), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Genome analysis has revealed that members of the Lrp family of transcriptional regulators are widely distributed among prokaryotes, both bacteria and archaea. The archetype Leucine-responsive Regulatory Protein from Escherichia coli is a global regulator involved in modulating a variety of metabolic functions, including the catabolism and anabolism of amino acids as well as pili synthesis. Most Lrp homologues, however, appear to act as specific regulators of amino acid metabolism-related genes. Like most prokaryotic transcriptional regulators, Lrp-like regulators consist of a DNA-binding domain and a ligand-binding domain. The crystal structure of the Pyrococcus furiosus LrpA revealed an N-terminal domain with a common helix–turn–helix fold, and a C-terminal domain with a typical αβ-sandwich fold. The latter regulatory domain constitutes a novel ligand-binding site and has been designated RAM. Database analysis reveals that the RAM domain is present in many prokaryotic genomes, potentially encoding (1) Lrp-homologues, when fused to a DNA-binding domain (2) enzymes, when fused as a potential regulatory domain to a catalytic domain, and (3) stand-alone RAM modules with unknown function. The architecture of Lrp regulators with two distinct domains that harbour the regulatory (effector-binding) site and the active (DNA-binding) site, and their separation by a flexible hinge region, suggests a general allosteric switch of Lrp-like regulators.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] We report the engineering of Lactococcus lactis to produce the amino acid l-alanine. The primary end product of sugar metabolism in wild-type L. lactis is lactate (homolactic fermentation). The terminal enzymatic reaction (pyruvate + NADH→l-lactate + NAD+) is performed by l-lactate ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] The extremely thermostable wild type and recombinant β-glucosidases, from Pyrococcus furiosus, served as catalysts for the biotransformation of new glucoconjugates at elevated temperatures. In conversion experiments using the transglucosylation approach, the free or immobilized enzyme accepted ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1433-4909
    Keywords: Key words Glutamate dehydrogenase, Gene cloning and expression, Sequence analysis, Thermostability, Phylogenetic analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The hyperthermophilic bacterium Thermotoga maritima, which grows at up to 90°C, contains an L-glutamate dehydrogenase (GDH). Activity of this enzyme could be detected in T. maritima crude extracts, and appeared to be associated with a 47-kDa protein which cross-reacted with antibodies against purified GDH from the hyperthermophilic archaeon Pyrococcus woesei. The single-copy T. maritima gdh gene was cloned by complementation in a glutamate auxotrophic Escherichia coli strain. The nucleotide sequence of the gdh gene predicts a 416-residue protein with a calculated molecular weight of 45852. The gdh gene was inserted in an expression vector and expressed in E. coli as an active enzyme. The T. maritima GDH was purified to homogeneity. The NH2-terminal sequence of the purified enzyme was PEKSLYEMAVEQ, which is identical to positions 2–13 of the peptide sequence derived from the gdh gene. The purified native enzyme has a size of 265 kDa and a subunit size of 47 kDa, indicating that GDH is a homohexamer. Maximum activity of the enzyme was measured at 75°C and the pH optima are 8.3 and 8.8 for the anabolic and catabolic reaction, respectively. The enzyme was found to be very stable at 80°C, but appeared to lose activity quickly at higher temperatures. The T. maritima GDH shows the highest rate of activity with NADH (V max of 172U/mg protein), but also utilizes NADPH (V max of 12U/mg protein). Sequence comparisons showed that the T. maritima GDH is a member of the family II of hexameric GDHs which includes all the GDHs isolated so far from hyperthermophiles. Remarkably, phylogenetic analysis positions all these hyperthermophilic GDHs in the middle of the GDH family II tree, with the bacterial T. maritima GDH located between that of halophilic and thermophilic euryarchaeota.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1572-9699
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Over the last years, important advances have been made in the study of the production of exopolysaccharides (EPS) by several lactic acid bacteria, including Lactococcus lactis. From different EPS-producing lactococcal strains the specific eps gene clusters have been characterised. They contain eps genes, which are involved in EPS repeating unit synthesis, export, polymerisation, and chain length determination. The function of the glycosyltransferase genes has been established and the availability of these genes opened the way to EPS engineering. In addition to the eps genes, biosynthesis of EPS requires a number of housekeeping genes that are involved in the metabolic pathways leading to the EPS-building blocks, the nucleotide sugars. The identification and characterisation of several of these housekeeping genes (galE, galU, rfbABCD) allows the design of metabolic engineering strategies that should lead to increased EPS production levels by L. lactis. Finally, model developme nt has been initiated in order to predict the physicochemical consequences of the addition of a EPS to a product.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...