Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Opus Repository ZIB  (18)
  • 2020-2023  (10)
  • 1995-1999  (8)
  • 2021  (10)
  • 1998  (8)
Source
Years
Year
Keywords
Language
  • 1
    Publication Date: 2020-03-09
    Description: Dieser Artikel behandelt einen Ansatz zur zielorientierten Optimierung der Dienstplanung im ÖPNV. Der Ansatz zielt auf die vollständige Ausnutzung aller planerischen Freiheitsgrade unter korrekter Berücksichtigung von gesetzlichen, tariflichen, technischen und betrieblichen Rahmenbedingungen. Er basiert auf mathematischen Optimierungstechniken, die wir gegenwärtig in einem vom Bundesministerium für Bildung und Forschung ({\tt bmb+f}) geförderten Verbundprojekt in einer Kooperation zwischen der HanseCom GmbH, der IVU GmbH und dem Konrad-Zuse-Zentrum für Informationstechnik Berlin entwickeln. Es ist geplant, das Verfahren in die Softwareprodukte HOT II, MICROBUS II und OPUS zu integrieren. Verhandlungen mit den Berliner Verkehrsbetrieben über eine Projektbeteiligung und Integration unserer Software in BERTA sind zur Zeit im Gang. Wir beschreiben die Methodik des Ansatzes, diskutieren Aspekte seiner praktischen Verwendung, und wir berichten über den Stand der Entwicklung.
    Keywords: ddc:000
    Language: German
    Type: reportzib , doc-type:preprint
    Format: text/plain
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-05
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-05
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-05
    Language: English
    Type: bookpart , doc-type:bookPart
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-05
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-19
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-03-09
    Description: The world has experienced two hundred years of unprecedented advances in vehicle technology, transport system development, and traffic network extension. Technical progress continues but seems to have reached some limits. Congestion, pollution, and increasing costs have created, in some parts of the world, a climate of hostility against transportation technology. Mobility, however, is still increasing. What can be done? There is no panacea. Interdisciplinary cooperation is necessary, and we are going to argue in this paper that {\em Mathematics\/} can contribute significantly to the solution of some of the problems. We propose to employ methods developed in the {\em Theory of Optimization\/} to make better use of resources and existing technology. One way of optimization is better planning. We will point out that {\em Discrete Mathematics\/} provides a suitable framework for planning decisions within transportation systems. The mathematical approach leads to a better understanding of problems. Precise and quantitative models, and advanced mathematical tools allow for provable and reproducible conclusions. Modern computing equipment is suited to put such methods into practice. At present, mathematical methods contribute, in particular, to the solution of various problems of {\em operational planning}. We report about encouraging {\em results\/} achieved so far.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-05
    Description: Diese Dissertation befaßt sich mit ganzzahligen Programmen mit 0/1 Systemen: SetPacking-, Partitioning- und Covering-Probleme. Die drei Teile der Dissertation behandeln polyedrische, algorithmische und angewandte Aspekte derartiger Modelle.
    Keywords: ddc:000
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Format: application/pdf
    Format: application/postscript
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-14
    Description: We present a new label-setting algorithm for the Multiobjective Shortest Path (MOSP) problem that computes a minimum complete set of efficient paths for a given instance. The size of the priority queue used in the algorithm is bounded by the number of nodes in the input graph and extracted labels are guaranteed to be efficient. These properties allow us to give a tight output-sensitive running time bound for the new algorithm that can almost be expressed in terms of the running time of Dijkstra’s algorithm for the Shortest Path problem. Hence, we suggest to call the algorithm Multiobjective Dijkstra Algorithm (MDA). The simplified label management in the MDA allows us to parallelize some subroutines. In our computational experiments, we compare the MDA and the classical label-setting MOSP algorithm by Martins, which we improved using new data structures and pruning techniques. On average, the MDA is 2 to 9 times faster on all used graph types. On some instances the speedup reaches an order of magnitude.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-14
    Description: Deutsche Bahn (DB) operates a large fleet of rolling stock (locomotives, wagons, and train sets) that must be combined into trains to perform rolling stock rotations. This train composition is a special characteristic of railway operations that distinguishes rolling stock rotation planning from the vehicle scheduling problems prevalent in other industries. DB models train compositions using hyperarcs. The resulting hypergraph models are ad-dressed using a novel coarse-to-fine method that implements a hierarchical column genera-tion over three levels of detail. This algorithm is the mathematical core of DB’s fleet em-ployment optimization (FEO) system for rolling stock rotation planning. FEO’s impact within DB’s planning departments has been revolutionary. DB has used it to support the company’s procurements of its newest high-speed passenger train fleet and its intermodal cargo locomotive fleet for cross-border operations. FEO is the key to successful tendering in regional transport and to construction site management in daily operations. DB’s plan-ning departments appreciate FEO’s high-quality results, ability to reoptimize (quickly), and ease of use. Both employees and customers benefit from the increased regularity of operations. DB attributes annual savings of 74 million euro, an annual reduction of 34,000 tons of CO2 emissions, and the elimination of 600 coupling operations in cross-border operations to the implementation of FEO.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...