Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Key words: Chitinase  ;  β-1 ; 3-Glucanase ; α-Manno‐sidase ; Nicotiana ; Protein secretion ; Suspension culture ; Vacuolar enzymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. We have investigated the possibility that vacuolar proteins can be secreted into the medium of cultured cells of Nicotiana tabacum L. Time-course and balance-sheet experiments showed that a large fraction, up to ca. 19%, of vacuolar α-mannosidase (EC 3.2.1.24) and vacuolar class I chitinase (EC 3.2.1.14) in suspension cultures accumulated in the medium within one week after subculturing. This effect was most pronounced in media containing 2,4-dichlorophenoxyacetic acid (2,4-D). Under comparable conditions only a small fraction, 1.8–5.1% of the total protein and ca. 1% of malate dehydrogenase (EC 1.1.1.37), which is localized primarily in the mitochondria and cytoplasm, accumulated in the medium. Pulse-chase experiments showed that newly synthesized vacuolar class I isoforms of chitinase and β-1,3-glucanase (EC 3.2.1.39) were released into the medium. Post-translational processing, but not the release of these proteins, was delayed by the secretion inhibitor brefeldin A. Only forms of the proteins present in the vacuole, i.e. mature chitinase and pro-β-1,3-glucanase and mature β-1,3-glucanase, were chased into the medium of tobacco cell-suspension cultures. Our results provide strong evidence that vacuolar α-mannosidase, chitinase and β-1,3-glucanase can be secreted into the medium. They also suggest that secretion of chitinase and β-1,3-glucanase might be via a novel pathway in which the proteins pass through the vacuolar compartment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 38 (1998), S. 77-99 
    ISSN: 1573-5028
    Keywords: storage proteins ; intracellular sorting ; secretory pathway ; processing ; deposition ; protein bodies
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Plants store amino acids for longer periods in the form of specific storage proteins. These are deposited in seeds, in root and shoot tubers, in the wood and bark parenchyma of trees and in other vegetative organs. Storage proteins are protected against uncontrolled premature degradation by several mechanisms. The major one is to deposit the storage proteins into specialized membrane-bounded storage organelles, called protein bodies (PB). In the endosperm cells of maize and rice prolamins are sequestered into PBs which are derived from the endoplasmic reticulum (ER). Globulins, the typical storage proteins of dicotyledonous plants, and prolamins of some cereals are transported from the ER through the Golgi apparatus and then into protein storage vacuoles (PSV) which later become transformed into PBs. Sorting and targeting of storage proteins begins during their biosynthesis on membrane-bound polysomes where an N-terminal signal peptide mediates their segregation into the lumen of the ER. After cleavage of the signal peptide, the polypeptides are glycosylated and folded with the aid of chaperones. While still in the ER, disulfide bridges are formed which stabilize the structure and several polypeptides are joined to form an oligomer which has the proper conformation to be either deposited in ER-derived PB or to be further transferred to the PSV. At the trans-Golgi cisternae transport vesicles are sequestered which carry the storage proteins to the PSV. Several storage proteins are also processed after arriving in the PSVs in order to generate a conformation that is capable of final deposition. Some storage protein precursors have short N- or C-terminal targeting sequences which are detached after arrival in the PSV. Others have been shown to have internal sequence regions which could act as targeting information. In some cases positive targeting information is known to mediate sorting into the PSV whereas in other cases aggregation and membrane association seem to be major sorting mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...