Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (8)
  • 2015  (8)
Years
  • 2015-2019  (8)
Year
Language
  • 1
    Publication Date: 2020-08-05
    Description: We consider a stationary discrete-time linear process that can be observed by a finite number of sensors. The experimental design for the observations consists of an allocation of available resources to these sensors. We formalize the problem of selecting a design that maximizes the information matrix of the steady-state of the Kalman filter, with respect to a standard optimality criterion, such as $D-$ or $A-$optimality. This problem generalizes the optimal experimental design problem for a linear regression model with a finite design space and uncorrelated errors. Finally, we show that under natural assumptions, a steady-state optimal design can be computed by semidefinite programming.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-22
    Description: We study an extension of the shortest path network interdiction problem and present a novel real-world application in this area. We consider the problem of determining optimal locations for toll control stations on the arcs of a transportation network. We handle the fact that drivers can avoid control stations on parallel secondary roads. The problem is formulated as a mixed integer program and solved using Benders decomposition. We present experimental results for the application of our models to German motorways.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-05
    Description: We prove a mathematical programming characterisation of approximate partial D-optimality under general linear constraints. We use this characterisation with a branch-and-bound method to compute a list of all exact D-optimal designs for estimating a pair of treatment contrasts in the presence of a nuisance time trend up to the size of 24 consecutive trials.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-05
    Description: Model-based optimal design of experiments (M-bODE) is a crucial step in model parametrization since it encloses a framework that maximizes the amount of information extracted from a battery of lab experiments. We address the design of M-bODE for dynamic models considering a continuous representation of the design. We use Semidefinite Programming (SDP) to derive robust minmax formulations for nonlinear models, and extend the formulations to other criteria. The approaches are demonstrated for a CSTR where a two-step reaction occurs.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-05
    Description: Let the design of an experiment be represented by an $s-$dimensional vector $w$ of weights with nonnegative components. Let the quality of $w$ for the estimation of the parameters of the statistical model be measured by the criterion of $D-$optimality, defined as the $m$th root of the determinant of the information matrix $M(w)=\sum_{i=1}^s w_i A_i A_i^T$, where $A_i$,$i=1,\ldots,s$ are known matrices with $m$ rows. In this paper, we show that the criterion of $D-$optimality is second-order cone representable. As a result, the method of second-order cone programming can be used to compute an approximate $D-$optimal design with any system of linear constraints on the vector of weights. More importantly, the proposed characterization allows us to compute an exact $D-$optimal design, which is possible thanks to high-quality branch-and-cut solvers specialized to solve mixed integer second-order cone programming problems. Our results extend to the case of the criterion of $D_K-$optimality, which measures the quality of $w$ for the estimation of a linear parameter subsystem defined by a full-rank coefficient matrix $K$. We prove that some other widely used criteria are also second-order cone representable, for instance, the criteria of $A-$, $A_K$-, $G-$ and $I-$optimality. We present several numerical examples demonstrating the efficiency and general applicability of the proposed method. We show that in many cases the mixed integer second-order cone programming approach allows us to find a provably optimal exact design, while the standard heuristics systematically miss the optimum.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-05
    Description: We prove a mathematical programming characterisation of approximate partial D-optimality under general linear constraints. We use this characterisation with a branch-and-bound method to compute a list of all exact D-optimal designs for estimating a pair of treatment contrasts in the presence of a nuisance time trend up to the size of 24 consecutive trials.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-05
    Description: Model-based optimal design of experiments (M-bODE) is a crucial step in model parametrization since it encloses a framework that maximizes the amount of information extracted from a battery of lab experiments. We address the design of M-bODE for dynamic models considering a continuous representation of the design. We use Semidefinite Programming (SDP) to derive robust minmax formulations for nonlinear models, and extend the formulations to other criteria. The approaches are demonstrated for a CSTR where a two-step reaction occurs.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-05
    Description: We introduce the class of spot-checking games (SC games). These games model problems where the goal is to distribute fare inspectors over a toll network. In an SC game, the pure strategies of network users correspond to paths in a graph, and the pure strategies of the inspectors are subset of arcs to be controlled. Although SC games are not zero-sum, we show that a Nash equilibrium can be computed by linear programming. The computation of a strong Stackelberg equilibrium (SSE) is more relevant for this problem and we give a mixed integer programming (MIP) formulation for this problem. We show that the computation of such an equilibrium is NP-hard. More generally, we prove that it is NP-hard to compute a SSE in a polymatrix game, even if the game is pairwise zero-sum. Then, we give some bounds on the price of spite, which measures how the payoff of the inspector degrades when committing to a Nash equilibrium. Finally, we report computational experiments on instances constructed from real data, for an application to the enforcement of a truck toll in Germany. These numerical results show the efficiency of the proposed methods, as well as the quality of the bounds derived in this article.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...