Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (4)
Material
Years
Year
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experimental test of the radial force balance equation was done in the Compact Helical System Heliotron/Torsatron [S. Okamura et al. Nucl. Fusion 39, 1337 (1999)]. A radial electric field is measured with a heavy ion beam probe, while plasma rotation and drift velocity of fully ionized carbon are measured with charge exchange spectroscopy. The two measurements agree with each other to within 10% of the radial electric field in a wide range of electron densities of 0.3–2.0×1019 m−3. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The bifurcation nature of the electrostatic structure is studied in the toroidal helical plasma of the Compact Helical System (CHS) [K. Matsuoka et al., Proceedings of the 12th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Nice, 1988 (International Atomic Energy Agency, Vienna, 1989), Vol. 2, p. 411]. Observation of bifurcation-related phenomena is introduced, such as characteristic patterns of discrete potential profiles, and various patterns of self-sustained oscillations termed electric pulsation. Some patterns of the electrostatic structure are found to be quite important for fusion application owing to their association with transport barrier formation. It is confirmed, as is shown in several tokamak experiments, that the thermal transport barrier is linked with electrostatic structure through the radial electric field shear that can reduce the fluctuation resulting in anomalous transport. This article describes in detail spatio-temporal evolution during self-sustained oscillation, together with correlation between the radial electric field and other plasma parameters. An experimental survey to find dependence of the temporal and spatial patterns on plasma parameters is performed in order to understand systematically the bifurcation property of the toroidal helical plasma. The experimental results are compared with the neoclassical bifurcation property that is believed to explain the observed bifurcation property of the CHS plasmas. The present results show that the electrostatic property plays an essential role in the structural formation of toroidal helical plasmas, and demonstrate that toroidal plasma is an open system with a strong nonlinearity to provide a new attractive problem to be studied. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In neutral-beam-injection (NBI) heated plasmas of the Compact Helical System (CHS) heliotron/torsatron [K. Matsuoka et al., Plasma Physics and Controlled Nuclear Fusion Research, 1988 (International Atomic Energy Agency, Vienna, 1989), Vol. 2, p. 441], inward turbulent particle flux is observed at a particular radial location near the plasma edge. The observed reversal of the particle flux is connected to the change in the cross-phase between electron density and poloidal electric field fluctuations. This phenomenon is observed in the parameter regime of low collisionality at the electron temperature Te〉15 eV, electron density ne〈3×1018 m−3, which approximately corresponds to the effective collision frequency normalized by the transit frequency of a circulating particle ν*(approximately-less-than)1. The large inward particle flux ((approximately-greater-than)1×1020 m−2 s−1) correlates with the positive shear of the radial electric field Er′ ((approximately-greater-than)1×106 V m−2), but does not have clear correlation with the radial electric field Er and the curvature Er″. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 23 (2000), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper presents some experimental results which demonstrate restraint of fatigue crack growth in an Al–Mg alloy by wedge effects of fine particles.Fatigue test specimens were machined from a JIS A5083P-O Al–Mg alloy plate of 5 mm thickness and an EDM starter notch was introduced to each specimen. Three kinds of fine particles were prepared as the materials to be wedged into the fatigue cracks, i.e. magnetic particles and two kinds of alumina particles having different mean particle sizes of 47.3 μm and 15.2 μm. Particles of each kind were suspended in an oil to form a paste, which was applied on the specimen surface covering the notch zone prior to the fatigue tests. In order to make some fracture mechanics approaches, in situ observations of fatigue cracks were performed for the two cases using a CCD microscope, with a magnification of ×1000. The crack length and the crack opening displacement (COD) at the notch root, δ, were measured.First it was ensured by control tests that the wedge effect of the oil itself was negligible. Then it was found that the large size alumina particles were not effective in restraining crack growth because the paste was difficult to make due to the large particle size and the particles could not enter the cracks properly.However, both of the magnetic particles and the small size alumina particles effectively restrained crack growth, especially the latter which produced 143–350% increase in the lifetime to failure.From the in situ observations, in the case of the small size alumina particles, a pronounced retardation of crack growth was observed immediately after the crack length exceeded 0.4 mm, and this is considered to be due to the range of COD value, δmax − δmin , being strongly affected by the wedge effects of the particles. The crack retardation effect continues almost through the entire lifetime if the alumina paste is re-applied at specified intervals, while the effect is apparently lost after the crack length exceeds ∼2 mm when such re-painting is not continued.After the fatigue tests, some macro- and microfractographic analyses were performed using a CCD microscope, a SEM and an EPMA (electron probe microanalyser), in order to examine the mechanism of fatigue crack restraint by the wedge effects of the fine particles. From those analyses, it was reasoned that the fine particles that entered a fatigue crack are subjected to cyclic pressures between the crack faces and then form a kind of wedge which causes significant levels of crack closure that restrain crack growth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...