Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (22)
  • English  (22)
Source
Years
Year
Keywords
Language
  • English  (22)
  • 1
    Publication Date: 2014-02-26
    Description: \noindent In molecular dynamics applications there is a growing interest in so-called {\em mixed quantum-classical} models. These models describe most atoms of the molecular system by the means of classical mechanics but an important, small portion of the system by the means of quantum mechanics. A particularly extensively used model, the QCMD model, consists of a {\em singularly perturbed}\/ Schrödinger equation nonlinearly coupled to a classical Newtonian equation of motion. This paper studies the singular limit of the QCMD model for finite dimensional Hilbert spaces. The main result states that this limit is given by the time-dependent Born-Oppenheimer model of quantum theory---provided the Hamiltonian under consideration has a smooth spectral decomposition. This result is strongly related to the {\em quantum adiabatic theorem}. The proof uses the method of {\em weak convergence} by directly discussing the density matrix instead of the wave functions. This technique avoids the discussion of highly oscillatory phases. On the other hand, the limit of the QCMD model is of a different nature if the spectral decomposition of the Hamiltonian happens not to be smooth. We will present a generic example for which the limit set is not a unique trajectory of a limit dynamical system but rather a {\em funnel} consisting of infinitely many trajectories.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-26
    Description: The adaptive Rothe method approaches a time-dependent PDE as an ODE in function space. This ODE is solved {\em virtually} using an adaptive state-of-the-art integrator. The {\em actual} realization of each time-step requires the numerical solution of an elliptic boundary value problem, thus {\em perturbing} the virtual function space method. The admissible size of that perturbation can be computed {\em a priori} and is prescribed as a tolerance to an adaptive multilevel finite element code, which provides each time-step with an individually adapted spatial mesh. In this way, the method avoids the well-known difficulties of the method of lines in higher space dimensions. During the last few years the adaptive Rothe method has been applied successfully to various problems with infinite speed of propagation of information. The present study concerns the adaptive Rothe method for hyperbolic equations in the model situation of the wave equation. All steps of the construction are given in detail and a numerical example (diffraction at a corner) is provided for the 2D wave equation. This example clearly indicates that the adaptive Rothe method is appropriate for problems which can generally benefit from mesh adaptation. This should be even more pronounced in the 3D case because of the strong Huygens' principle.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-26
    Description: In our previous work [Preprint SC 97-48] we have studied natural mechanical systems on Riemannian manifolds with a strong constraining potential. These systems establish fast nonlinear oscillations around some equilibrium manifold. Important in applications, the problem of elimination of the fast degrees of freedom, or {\em homogenization in time}, leads to determine the singular limit of infinite strength of the constraining potential. In the present paper we extend this study to systems which are subject to external forces that are non-potential, depending in a mixed way on positions {\em and}\/ velocities. We will argue that the method of weak convergence used in [1997] covers such forces if and only if they result from viscous friction and gyroscopic terms. All the results of [1997] directly extend if there is no friction transversal to the equilibrium manifold; elsewise we show that instructive modifications apply.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-05-04
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-15
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-26
    Description: This paper presents a mathematical derivation of a model for quantum-classical molecular dynamics (QCMD) as a {\em partial} classical limit of the full Schrödinger equation. This limit is achieved in two steps: separation of the full wavefunction and short wave asymptotics for its ``classical'' part. Both steps can be rigorously justified under certain smallness assumptions. Moreover, the results imply that neither the time-dependent self-consistent field method nor mixed quantum-semi-classical models lead to better approximations than QCMD since they depend on the separation step, too. On the other hand, the theory leads to a characterization of the critical situations in which the models are in danger of largely deviating from the solution of the full Schrödinger equation. These critical situations are exemplified in an illustrative numerical simulation: the collinear collision of an Argon atom with a harmonic quantum oscillator.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-02-26
    Description: The interaction potential of molecular systems which are typically used in molecular dynamics can be split into two parts of essentially different stiffness. The strong part of the potential forces the solution of the equations of motion to oscillate on a very small time scale. There is a strong need for eliminating the smallest time scales because they are a severe restriction for numerical long-term simulations of macromolecules. This leads to the idea of just freezing the high frequency degrees of freedom (bond stretching and bond angles). However, the naive way of doing this via holonomic constraints is bound to produce incorrect results. The paper presents a mathematically rigorous discussion of the limit situation in which the stiffness of the strong part of the potential is increased to infinity. It is demonstrated that the average of the limit solution indeed obeys a constrained Hamiltonian system but with a {\em corrected soft potential}. An explicit formula for the additive potential correction is given and its significant contribution is demonstrated in an illustrative example. It appears that this correcting potential is definitely not identical with the Fixman-potential as was repeatedly assumed in the literature.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-02-26
    Description: The paper studies Hamiltonian systems with a strong potential forcing the solutions to oscillate on a very small time scale. In particular, we are interested in the limit situation where the size $\epsilon$ of this small time scale tends to zero but the velocity components remain oscillating with an amplitude variation of order ${\rm O}(1)$. The process of establishing an effective initial value problem for the limit positions will be called {\em homogenization} of the Hamiltonian system. This problem occurs in mechanics as the problem of realization of holonomic constraints, in plasma physics as the problem of guiding center motion, in the simulation of biomolecules as the so called smoothing problem. We suggest the systematic use of the notion of {\em weak convergence} in order to approach this problem. This methodology helps to establish unified and short proofs of the known results which throw light on the inherent structure of the problem. Moreover, we give a careful and critical review of the literature.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-02-26
    Description: The Car-Parrinello (CP) approach to ab initio molecular dynamics serves as an approximation to time-dependent Born-Oppenheimer (BO) calculations. It replaces the explicit minimization of the energy functional by a fictitious Newtonian dynamics and therefore introduces an artificial mass parameter $\mu$ which controls the electronic motion. A recent theoretical investigation shows that the CP-error, i.e., the deviation of the CP--solution from the BO-solution {\em decreases} like $\mu^{1/2}$ asymptotically. Since the computational effort {\em increases} like $\mu^{-1/2}$, the choice of $\mu$ has to find a compromise between efficiency and accuracy. The asymptotical result is used in this paper to construct an easily implemented algorithm which automatically controls $\mu$: the parameter $\mu$ is repeatedly adapted during the simulation by choosing $\mu$ as large as possible while pushing an error measure below a user-given tolerance. The performance and reliability of the algorithm is illustrated by a typical example.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-02-26
    Description: The Car-Parrinello method for ab-initio molecular dynamics avoids the explicit minimization of energy functionals given by functional density theory in the context of the quantum adiabatic approximation (time-dependent Born-Oppenheimer approximation). Instead, it introduces a fictitious classical dynamics for the electronic orbitals. For many realistic systems this concept allowed first-principle computer simulations for the first time. In this paper we study the {\em quantitative} influence of the involved parameter $\mu$, the fictitious electronic mass of the method. In particular, we prove by use of a carefully chosen two-time-scale asymptotics that the deviation of the Car-Parrinello method from the adiabatic model is of order ${\rm O}(\mu^{1/2})$ --- provided one starts in the ground state of the electronic system and the electronic excitation spectrum satisfies a certain non-degeneracy condition. Analyzing a two-level model problem we prove that our result cannot be improved in general. Finally, we show how to use the gained quantitative insight for an automatic control of the unphysical ``fake'' kinetic energy of the method.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...