Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of nonlinear science 6 (1996), S. 271-292 
    ISSN: 1432-1467
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Physics
    Notes: Summary This article concerns the three-dimensional, large deformation dynamics of an inextensible, unshearable rod. To enforce the conditions of inextensibility and unshearability, a technique we call the impetus-striction method is exploited to reformulate the constrained Lagrangian dynamics as an unconstrained Hamiltonian system in which the constraints appear as integrals of the evolution. We show here that this impetus-striction formulation naturally leads to a numerical scheme which respects the constraints and conservation laws of the continuous system. We present simulations of the dynamics of a rod that is fixed at one end and free at the other.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archive for rational mechanics and analysis 135 (1996), S. 357-396 
    ISSN: 1432-0673
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Physics
    Notes: Abstract A method is presented for deriving unconstrained Hamiltonian systems of partial differential equations equivalent to given constrained Lagrangian systems. The method is applied to the theory of planar, finite-amplitude motions of inextensible and unshearable elastic rods. The constraints of inextensibility and unshearability become integrals of motion in the Hamiltonian formulation. It is known that in the theory of uniform, inextensible, unshearable rods of infinite length there arise solitary-wave solutions with the property that each profile can move at arbitrary speed. The Hamiltonian formulation is exploited to analyze the stability properties of these solitary waves. The wave profiles are first characterized as critical points of an appropriate time-invariant functional. It is then shown that for a certain range of wave speeds the solitary-wave profiles are actually nonisolatedminimizers of the functional, a fact with implications for nonlinear stability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...