Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 408-409 (1999), S. 139-144 
    ISSN: 1573-5117
    Keywords: eutrophication ; ecological modelling ; multiple regression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A research was made on the potential use of neural network based models in eutrophication modelling. As a result, an algorithm was developed to handle the practical aspects of designing, implementing and assessing the results of a neural network based model as a lake management tool. To illustrate the advantages and limitations of the neural network model, a case study was carried out to estimate the chlorophyll-aconcentration in Keban Dam Reservoir as a function of sampled water quality parameters (PO4phosphorus, NO3nitrogen, alkalinity, suspended solids concentration, pH, water temperature, electrical conductivity, dissolved oxygen concentration and Secchi depth) by a neural network based model. Alternatively, the same system was solved with a linear multiple regression model in order to compare the performances of the proposed neural network based model and the traditional linear multiple regression model. For both of the models, the linear correlation coefficients between the logarithms of observed and calculated chlorophyll-aconcentrations were calculated. The correlation coefficient R, the best linear fit between the observed and calculated values, was evaluated to assess the performances of the two models. R values of 0.74 and 0.71 were obtained for the neural network based model and the linear multiple regression model, respectively. The study showed that the neural network based model can be used to estimate chlorophyll-awith a performance similar to that of the traditional linear multiple regression method. However, for cases where the input and the output variables are not linearly correlated, neural network based models are expected to show a better performance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...