Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 356 (1997), S. 671-677 
    ISSN: 1432-1912
    Keywords: Key words Rat anococcygeus muscle ; Muscarinic ; receptor subtypes ; Muscarinic agonists ; Muscarinic ; antagonists ; M3 receptors ; Stereoselectivity ; Hexahydro-difenidol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The present study was designed to characterize the postjunctional muscarinic receptors mediating contraction in rat anococcygeus muscle by means of a series of muscarinic agonists and subtype-preferring key muscarinic antagonists. Cumulative addition of muscarinic agonists elicited concentration-dependent contractions with the following rank order of potency (pD2 values): (+)-muscarine (6.36) ≥ oxotremorine M (6.21) ≥ arecaidine propargyl ester (APE) (6.18) 〉 carbachol (5.68)=(±)-methacholine (5.65) 〉 4-(4-chlorophenyl-carbamoyloxy)-2-butynyltrimethylammonium chloride (4-Cl-McN-A-343) (4.28) 〉 4-(3-chlorophenylcarbamoyloxy)-2-butynyltrimethylammonium chloride (McN-A-343) (3.89). (+)-Muscarine, oxotremorine M, carbachol and (±)-methacholine behaved as full agonists, whereas APE, 4-Cl-McN-A-343 and McN-A-343 displayed partial agonism. The contractile responses of the rat anococcygeus muscle to (±)-methacholine were competitively antagonized by pirenzepine (pA2=6.92), 11-[[4-[4-(diethylamino)butyl]-1-piperidinyl]acetyl] 5,11-dihydro-6H-pyrido(2,3-b)(1,4)-benzodiazepine-6-one (AQ-RA 741; pA2=6.75), himbacine (pA2=7.11), (±)-p-fluoro-hexahydro-sila-difenidol (p-F-HHSiD; pA2=7.68) and the (R)- and (S)-enantiomers of hexahydro-difenidol [(R)-HHD: pA2=8.52; (S)-HHD: pA2=6.06]. A comparison of the pA2 values derived from studies of contraction in rat anococcygeus muscle with literature binding (pKi values) and functional affinities (pA2 values) obtained at native M1-M4 receptors strongly suggests that the postjunctional muscarinic receptors mediating contraction in rat anococcygeus muscle are of the M3 subtype.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-01-29
    Description: In the clinical cancer therapy of regional hyperthermia nonlinear perfusion effects inside and outside the tumor seem to play a not negligible role. A stationary model of such effects leads to a nonlinear Helmholtz term within an elliptic boundary value problem. The present paper reports about the application of a recently designed adaptive multilevel FEM to this problem. For several 3D virtual patients, nonlinear versus linear model is studied. Moreover, the numerical efficiency of the new algorithm is compared with a former application of an adaptive FEM to the corresponding instationary model PDE.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-03-20
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-01-29
    Description: The finite element setting for nonlinear elliptic PDEs directly leads to the minimization of convex functionals. Uniform ellipticity of the underlying PDE shows up as strict convexity of the arising nonlinear functional. The paper analyzes computational variants of Newton's method for convex optimization in an affine conjugate setting, which reflects the appropriate affine transformation behavior for this class of problems. First, an affine conjugate Newton--Mysovskikh type theorem on the local quadratic convergence of the exact Newton method in Hilbert spaces is given. It can be easily extended to inexact Newton methods, where the inner iteration is only approximately solved. For fixed finite dimension, a special implementation of a Newton--PCG algorithm is worked out. In this case, the suggested monitor for the inner iteration guarantees quadratic convergence of the outer iteration. In infinite dimensional problems, the PCG method may be just formally replaced by any Galerkin method such as FEM for linear elliptic problems. Instead of the algebraic inner iteration errors we now have to control the FE discretization errors, which is a standard task performed within any adaptive multilevel method. A careful study of the information gain per computational effort leads to the result that the quadratic convergence mode of the Newton--Galerkin algorithm is the best mode for the fixed dimensional case, whereas for an adaptive variable dimensional code a special linear convergence mode of the algorithm is definitely preferable. The theoretical results are then illustrated by numerical experiments with a {\sf NEWTON--KASKADE} algorithm.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-29
    Description: The paper deals with the multilevel solution of {\em elliptic} partial differential equations (PDEs) in a {\em finite element} setting: {\em uniform ellipticity} of the PDE then goes with {\em strict monotonicity} of the derivative of a nonlinear convex functional. A {\em Newton multigrid method} is advocated, wherein {\em linear residuals} are evaluated within the multigrid method for the computation of the Newton corrections. The globalization is performed by some {\em damping} of the ordinary Newton corrections. The convergence results and the algorithm may be regarded as an extension of those for local Newton methods presented recently by the authors. An {\em affine conjugate} global convergence theory is given, which covers both the {\em exact} Newton method (neglecting the occurrence of approximation errors) and {\em inexact} Newton--Galerkin methods addressing the crucial issue of accuracy matching between discretization and iteration errors. The obtained theoretical results are directly applied for the construction of adaptive algorithms. Finally, illustrative numerical experiments with a~{\sf NEWTON--KASKADE} code are documented.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Publication Date: 2019-01-29
    Description: The C++ standard template library has many useful containers for data. The standard library includes two adpators, queue, and stack. The authors have extended this model along the lines of relational database semantics. Sometimes the analogy is striking, and we will point it out occasionally. An adaptor allows the standard algorithms to be used on a subset or modification of the data without having to copy the data elements into a new container. The authors provide many useful adaptors which can be used together to produce interesting views of data in a container.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-12
    Language: English
    Type: bookpart , doc-type:bookPart
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...