Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The objective of this study was to investigate the relationship between molecular marker diversity and heterosis in both intra-and inter-sub-specific hybrids of rice to evaluate the feasibility of predicting hybrid performance using molecular markers. Eleven elite lines were intermated resulting in a diallel set including 10 indica × indica, 15 japonica × japonica and 30 indica × japonica crosses. The F1 hybrids and parents were evaluated for agronomic performance in a replicated field trial. The parental lines were tested for DNA polymorphisms with 113 restriction fragment length polymorphism (RFLP) probes covering the 12 rice chromosomes. Inter-subspecific crosses showed better performance and higher heterosis than intrasubspecific hybrids. Correlations of marker heterozygosity with hybrid performance and heterosis differed considerably between the two subspecies; they were higher in crosses within japonica subspecies than within indica subspecies. Very little correlation was detected in intersubspecific crosses. It was concluded that relationships between marker heterozygosity and hybrid performance were complex owing to germplasm diversity and the complexity of the genetic basis of heterosis. The implications of the results in predicting hybrid performance using molecular markers are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Key words DNA methylation ; Hybrid rice ; Tissue specificity ; Isoschizomers ; PCR amplification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract DNA methylation is known to play an important role in the regulation of gene expression in eukaryotes. In this study, we assessed the extent and pattern of cytosine methylation in the rice genome, using the technique of methylation-sensitive amplified polymorphism (MSAP), which is a modification of the amplified fragment length polymorphism (AFLP) method that makes use of the differential sensitivity of a pair of isoschizomers to cytosine methylation. The tissues assayed included seedlings and flag leaves of an elite rice hybrid, Shanyou 63, and the parental lines Zhenshan 97 and Minghui 63. In all, 1076 fragments, each representing a recognition site cleaved by either or both of the isoschizomers, were amplified using 16 pairs of selective primers. A total of 195 sites were found to be methylated at cytosines in one or both parents, and the two parents showed approximately the same overall degree of methylation (16.3%), as revealed by the incidence of differential digestion by the isoschizomers. Four classes of patterns were identified in a comparative assay of cytosine methylation in the parents and hybrid; increased methylation was detected in the hybrid compared to the parents at some of the recognition sites, while decreased methylation in the hybrid was detected at other sites. A small proportion of the sites was found to be differentially methylated in seedlings and flag leaves; DNA from young seedlings was methylated to a greater extent than that from flag leaves. Almost all of the methylation patterns detected by MSAP could be confirmed by Southern analysis using the isolated amplified fragments as probes. The results clearly demonstrate that the MSAP technique is highly efficient for large-scale detection of cytosine methylation in the rice genome. We believe that the technique can be adapted for use in other plant species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 93 (1996), S. 1218-1224 
    ISSN: 1432-2242
    Keywords: Key words Oryza sativa  ;  Hybrid rice  ;  Predicting heterosis  ;  Diallel cross  ;  Restriction fragment length polymorphism (RFLP)  ;  Simple sequence repeat (SSR)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An essential assumption underlying markerbased prediction of hybrid performance is a strong linear correlation between molecular marker heterozygosity and hybrid performance or heterosis. This study was intended to investigate the extent of the correlations between molecular marker heterozygosity and hybrid performance in crosses involving two sets of rice materials, 9 indica and 11 japonica varieties. These materials represent a broad spectrum of the cultivated rice gene pool including landraces, primitive cultivars, historically important cultivars, modern elite cultivars and parents of superior hybrids. Varieties within each set were intermated in all possible non-reciprocal pairs resulting in 36 crosses in the indica set and 55 in the japonica set. The and their parents, 111 entries in total, were examined for performance of seven traits in a replicated field trial. The parents were surveyed for polymorphisms using 96 RFLP and ten SSR markers selected at regular intervals from a published molecular marker linkage map. Molecular marker genotypes of the hybrids were deduced from the parental genotypes. The analysis showed that, with very few exceptions, correlations in the indica dataset were higher than in that of their japonica counterparts. Among the seven traits analyzed, plant height showed the highest correlation between heterozygosity and hybrid performance and heteorsis in both indica and japonica datasets. Correlations were low to intermediate between hybrid performance and heterozygo-sity (both general and specific) in yield and yield com-ponent traits in both indica and japonica sets, and also low to intermediate between specific heterozygo-sity and heterosis in the indica set, whereas very little correlation was detected between heterosis and heterozygosity (either general or specific) in the japonica set. In comparison to the results from our previous studies, we concluded that the relationship between molecular marker heterozygosity and heterosis is variable, depending on the genetic materials used in the study, the diversity of rice germplasms and the complexity of the genetic basis of heterosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2242
    Keywords: Key words Common wild rice ; Cultivated rice ; Evolution ; Genetic analysis ; Molecular marker
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Domesticated rice differs from the wild progenitor in large arrays of morphological and physiological traits. The present study was conducted to identify the genetic factors controlling the differences between cultivated rice and its wild progenitor, with the intention to assess the genetic basis of the changes associated with the processes of rice domestication. A total of 19 traits, including seven qualitative and 12 quantitative traits, that are related to domestication were scored in an F2 population from a cross between a variety of the Asian cultivated rice (Oryza sativa) and an accession of the common wild rice (O. rufipogon). Loci controlling the inheritance of these traits were determined by making use of a molecular linkage map consisting of 348 molecular-marker loci (313 RFLPs, 12 SSRs and 23 AFLPs) based on this F2 population. All seven qualitative traits were each controlled by a single Mendelian locus. Analysis of the 12 quantitative traits resolved a total of 44 putative QTLs with an average of 3.7 QTLs per trait. The amount of variation explained by individual QTLs ranged from a low of 6.9% to a high of 59.8%, and many of the QTLs accounted for more than 20% of the variation. Thus, genes of both major and minor effect were involved in the differences between wild and cultivated rice. The results also showed that most of the genetic factors (qualitative or QTLs) controlling the domestication-related traits were concentrated in a few chromosomal blocks. Such a clustered distribution of the genes may provide explanations for the genetic basis of the “domestication syndrome” observed in evolutionary studies and also for the “linkage drag” that occurs in many breeding programs. The information on the genetic basis of some desirable traits possessed by the wild parent may also be useful for facilitating the utilization of these traits in rice-breeding programs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 93 (1996), S. 1218-1224 
    ISSN: 1432-2242
    Keywords: Oryza sativa ; Hybrid rice ; Predicting heterosis ; Diallel cross ; Restriction fragment length polymorphism (RFLP) ; Simple sequence repeat (SSR)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An essential assumption underlying markerbased prediction of hybrid performance is a strong linear correlation between molecular marker heterozygosity and hybrid performance or heterosis. This study was intended to investigate the extent of the correlations between molecular marker heterozygosity and hybrid performance in crosses involving two sets of rice materials, 9 indica and 11 japonica varieties. These materials represent a broad spectrum of the cultivated rice gene pool including landraces, primitive cultivars, historically important cultivars, modern elite cultivars and parents of superior hybrids. Varieties within each set were intermated in all possible nonreciprocal pairs resulting in 36 crosses in the indica set and 55 in the japonica set. The F1s and their parents, 111 entries in total, were examined for performance of seven traits in a replicated field trial. The parents were surveyed for polymorphisms using 96 RFLP and ten SSR markers selected at regular intervals from a published molecular marker linkage map. Molecular marker genotypes of the F1 hybrids were deduced from the parental genotypes. The analysis showed that, with very few exceptions, correlations in the indica dataset were higher than in that of their japonica counterparts. Among the seven traits analyzed, plant height showed the highest correlation between heterozygosity and hybrid performance and heteorsis in both indica and japonica datasets. Correlations were low to intermediate between hybrid performance and heterozygosity (both general and specific) in yield and yield component traits in both indica and japonica sets, and also low to intermediate between specific heterozygosity and heterosis in the indica set, whereas very little correlation was detected between heterosis and heterozygosity (either general or specific) in the japonica set. In comparison to the results from our previous studies, we concluded that the relationship between molecular marker heterozygosity and heterosis is variable, depending on the genetic materials used in the study, the diversity of rice germplasms and the complexity of the genetic basis of heterosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2242
    Keywords: Key words Oryza sativa L ; Indica and japonica ; Hybrid sterility ; Mapping ; Rice breeding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The discovery of wide-compatibility varieties (WCVs) that are able to produce normal fertility hybrids when crossed both to indica and japonica rice has enabled the fertility barrier between indica and japonica subspecies to be broken and provided the possibility of developing inter-subspecific hybrids in rice breeding programs. However, a considerable variation in the fertility level of hybrids from the same WCV crossed to different varieties has often been observed. One hypothesis for this variable fertility is that additional genes are involved in hybrid fertility besides the wide-compatibility gene (WCG). To assess such a possibility, we performed a genome-wide analysis by assaying a large population from a three-way cross ‘02428’/‘Nanjing 11’//‘Balilla’ using a total of 171 RFLP probes detecting 191 polymorphic loci distributed throughout the entire rice linkage map. Our analysis recovered 3 loci conferring significant effects on hybrid fertility. The major locus on chromosome 6 coincided in chromosomal location with the previously identified S 5 locus, and the 2 minor loci that mapped to chromosomes 2 and 12, respectively, were apparently distinct from all previously reported hybrid sterility genes. Interaction between the indica and japonica alleles at each of the loci caused a reduction in hybrid fertility. The joint effect of the 2 minor loci could lead to partial sterility even in the presence of the WCG. The location of the S 5 locus on the molecular marker linkage map was determined to be approximately 1.0 cM from the RFLP locus R2349. This tight linkage will be useful for marker-aided transfer of the WCG in hybrid rice breeding and for map-based cloning.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2242
    Keywords: Key words Genetic analysis ; Molecular marker ; Quantitative trait locus (QTL) ; Epistasis ; Hybrid rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Photoperiod-sensitive genetic male-sterile (PSGMS) rice, with its male fertility regulated by photoperiod length, is very useful for hybrid rice development. However, breeding for new PSGMS lines has faced two major difficulties – the stability of male sterility and the reversibility of male fertility. In this study we assessed the genetic bases of stability of sterility and fertility reversibility using a molecular marker-based approach. A cross was made between two newly bred PSGMS lines: Peiai 64S, which has a stable sterility but is difficult to reverse to fertility, and 8902S, which has a unstable sterility but is easy to reverse to fertility. The fertility of the parents and of the F1 and F2 populations was repeatedly examined under 11 different long-day and short-day conditions. The genetic effects were assayed by interval mapping and two-way analyses of variance using the F2 data of 128 polymorphic loci representing all the 12 rice chromosomes. The analyses resolved a number of single-locus QTLs and two-locus interactions under both long-day and short day conditions. The interactions involved a large number of loci, most of which were not detectable on a single-locus basis. The results showed that the genetic bases of both stability of sterility and reversibility of fertility are the joint effects of the additive effects of the QTLs and additive-by-additive components of two-locus interactions. The implications of these findings in hybrid rice development are also discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 95 (1997), S. 112-118 
    ISSN: 1432-2242
    Keywords: Key words Diallel cross ; Hybrid rice ; Oryza sativa ; Restriction fragment length polymorphism (RFLP) ; Simple sequence repeat (SSR)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The partial sterility of hybrids between the indica and japonica rice subspecies of Asian cultivated rice is a serious constraint for utilizing inter-subspecific heterosis in hybrid rice breeding. In this study, we have investigated the relationship between molecular-marker polymorphism and indica-japonica hybrid fertility using a diallel set involving 20 rice accessions including 9 indica and 11 japonica varieties. Spikelet fertility of the resulting 190 F1s and their parents was examined in a replicated field trial. Intra-subspecific hybrids showed much higher spikelet fertility than inter-subspecific hybrids except in crosses involving wide-compatibility varieties. The parents were surveyed for DNA polymorphism using 96 RFLP and ten SSR markers, which revealed extensive genetic differentiation between indica and japonica varieties. A large number of markers detected highly significant effects on hybrid fertility. The chromosomal locations for many of the positive markers coincided well with previously identified loci for hybrid sterility. The correlation between hybrid fertility and parental distance was low in both intra- and inter-subspecific crosses. The results suggest that the genetic basis of indica-japonica hybrid sterility is complex. It is the qualitative, rather than the quantitative, difference between the parents that determines the fertility of hybrids.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 97 (1998), S. 407-412 
    ISSN: 1432-2242
    Keywords: Key words Oryza sativa L. ; Indica-japonica cross ; Hybrid sterility ; Molecular marker ; Genetic analysis ; Epistasis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Wide-compatibility varieties (WCVs) are a special class of rice germplasm that is able to produce fertile hybrids when crossed to both indica and japonica rice varieties. WCVs may differ greatly in their spectrum and level of compatibility. The objective of this study was to determine the genetic basis of wide-compatibility conferred by ‘Dular’, a landrace variety from India that has demonstrated a high level of wide-compatibility in previous studies with a broad range of indica and japonica varieties. A three-way cross (‘Balilla/Dular//Nanjing 11’) was made and the resulting F1 population evaluated in the field for spikelet fertility. A total of 235 plants from this population was assayed individually for restriction fragment length polymorphisms (RFLPs) at 159 marker loci covering the entire rice genome at regular intervals. Quantitative trait locus (QTL) analysis identified 5 loci, located on chromosomes 1, 3, 5, 6 and 8, as having significant effects on hybrid fertility, which jointly explained 55.5% of the fertility variation in this population. The QTL on chromosome 5 ( f5) showed the largest effect on hybrid fertility, followed by those on chromosomes 6 ( f6), 3 ( f3) and 1 ( f1), with the one on chromosome 8 ( f8) having the smallest effect. Genotypes each composed of an allele from ‘Dular’ and an allele from ‘Nanjing 11’ at four ( f3, f5, f6 and f8) of the five QTLs contributed to the increase of fertility in the population. In contrast, the genotype composed of alleles from ‘Balilla’ and ‘Nanjing 11’ at the fifth locus ( f1) was in the direction of increasing fertility. Analysis of variance using marker genotypes at the five QTLs as the groups detected two interactions involving four of the five loci, a 2-locus interaction between f5 and f8 and a 3-locus interaction among f3, f5 and f6. The level of hybrid fertility is the result of complex interactions among these loci. The implication of the present findings in the utilization of the wide-compatibility of ‘Dular’ in rice breeding programs is also discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-2242
    Keywords: Key words Rice quality ; Amylose content ; Gel consistency ; Gelatinization temperature ; Genetic analysis ; Molecular marker
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The cooking and eating quality of the rice grain is one of the most serious problems in many rice-producing areas of the world. In this study, we conducted a molecular marker-based genetic analysis of three traits, amylose content (AC), gel consistency (GC) and gelatinization temperature (GT), that are the most important constituents of the cooking and eating quality of rice grains. The materials used in the analysis included F2 seeds, an F2:3 population, and an F9 recombinant inbred-line population from a cross between the parents of ’Shanyou 63’, the most widely grown hybrid in rice production in China. Segregation analyses of these three generations showed that each of the three traits was controlled by a single Mendelian locus. Molecular marker-based QTL (quantitative trait locus) analyses, both by one-way analysis of variance using single marker genotypes and by whole-genome scanning with MAPMAKER/QTL, revealed a single locus that controls the expression of all three traits. This locus coincided with the Wx region on the short arm of chromosome 6, indicating that all three traits were either controlled by the Wx locus or by a genomic region tightly linked to this locus. This finding has provided clues to resolving the molecular bases of GC and GT in future studies. The results also have direct implications for the quality improvement of rice varieties.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...