Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 38 (1994), S. 77-84 
    ISSN: 1040-452X
    Keywords: Cauda epididymidis ; Sperm activation ; Calcium ions ; Guanylate cyclase ; Adenylate cyclase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The role of intracellular signal transduction mechanisms in regulating the motility and metabolism of rat spermatozoa in undiluted caudal epididymal fluid (CEF) was examined. Samples of CEF containing immotile spermatozoa were exposed to drugs and other agents that either stimulate signal transduction pathways or mimic the action of their second messengers. Under these conditions, sperm motility in 25-30 nl of CEF was stimulated by calcium ions (Ca2+), N,2′ -O-dibutyryl-guanosine 3′:5′ -cyclic monophosphate (dibutryl cGMP), cyclic adenosine 3′:5′-monophosphate (cAMP), N6,2′-O-dibutyryladenosine 3′:5′ -cyclic monophosphate (dibutyryl cAMP), 8-bromoadenosine 3′:5′ -cyclic monophosphate (8-bromo cAMP), caffeine, theophylline and bicarbonate ions (HCO3-). Other agents such as magnesium ions (Mg2+), veratridine, phospholipase C (PLC), ionophore A23187, 1,2-dioctenoyl-sn-glycerol (DAG), phorbol 12-myristate 13-acetate, phospholipase A2 (PLA2), arachidonic acid, and melittin did not significantly influence motility. In the presence of radiolabelled energy substrates, untreated (immotile) spermatozoa in samples of CEF utilised D-[U-14C]glucose and [1-14C]acetate as exogenous energy sources for oxidative metabolism. No detectable 14C-lactate was produced, and none of the drugs altered the rate of glycolytic or oxidative metabolism. The findings suggest that the motility of rat caudal epididymal spermatozoa is regulated by Ca2+ and the guanylate cyclase and adenylate cyclase pathways, but not through the PLC and PLA2 pathways. Also, their metabolism of exogenous substrate was uncoupled from the induction of motility, and their oxidative capacity exceeded the rate of flux of glucose-carbon through the glycolytic pathway. © 1994 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 33 (1992), S. 108-115 
    ISSN: 1040-452X
    Keywords: Zona binding proteins ; Seminal plasma ; Fertilization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: A group of low Mr (16 kDa - 23 kDa) glycoproteins on ejaculated boar spermatozoa have been shown to have high affinity for homologous zona pellucida glycoproteins (ZPGPs). These ZPGP binding proteins are derived from seminal plasma as shown by their absence from epididymal spermatozoa and their presence in seminal plasma as identified by N-terminal amino acid sequence analysis. They bind to ZPGPs by a polysulphate recognition mechanism similar to that found for proacrosin-ZPGP interactions. The haemagglutination activity of boar seminal plasma is also associated with these low Mr glycoproteins. It is suggested that they play a role in regulating the rate of sperm capacitation and survival in the female reproductive tract. © 1992 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 25 (1990), S. 286-296 
    ISSN: 1040-452X
    Keywords: Monoclonal antibodies ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Eight monoclonal antibodies (McAbs), directed against antigens on rat cauda epididymal spermatozoa, were tested for their capacity to interfere with fertilization in vitro as a means of identifying molecules a potential role in sperm-egg recognition and fusion. Antigens recognized by the McAbs were visualized on live spermatozoa by indirect immunofluorescence (IIF) and characterized by immunoblotting. Five McAbs (designated 1B5, 2C4, 4B5, 5B1, and 8C4) recognized antigens specifically on the sperm acrosome and three (designated 2B1, 2D6, and 6B2) bound to the flagellum. Of the eight McAbs investigated, three (2B1, 2C4, and 6B2) were effective in blocking fertilization in vitro when added as culture supernalants to mixtures of sperm and eggs. McAb 6B2 was inhibitory due to its ability to agglutinate spermatozoa. McAbs 2B1 and 2C4 did not agglutinate capacitated spermatozoa, had no observable effect on motility, and yet blocked fertilization in a dose-dependent manner. McAb 2C4 did not give a reaction on immunoblots, but the 2B1 antigen was identified as an Mr 40 kD glycoprotein. McAb 2B1 appeared to block fertilization at the level of zona binding, whereas the effects of 2C4 were directed more against zone penetration and/or fusion with the vitellus. When sperm-egg complexes were stained with 2C4 or 2B1 McAbs and viewed by IIF, all spermatozoa that were attached to the zona showed fluorescence on the head. These results suggest that different antigens on the rat sperm head participate in different aspects of the fertilization process and that during capacitation there is either exposure of these antigens or else they migrate to their site of action from the flagellum.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...