Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (1)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 3808-3815 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The possibility of replacing Pt in the Ti/Pt/Au base and traditionally used metallurgical structure by Ni, while bonding InP laser chip to a submount with AuSn (80% Au) solder, has been investigated. Various Ni-based metal alloys have been prepared by evaporation. Reflow experiments were conducted in a chamber under forming gas-controlled ambient. The Ti/Ni/AuSn system provided much longer surface local freezing duration compared to the Ti/Pt/AuSn system. Scanning electron microscopy analysis revealed a smoother surface morphology for the Ti/Ni/AuSn system after the metal refroze. Auger electron spectroscopy depth profiles indicated the formation of a Ni-Sn-Au interacted layer. The interaction took place in two steps: the first stage was the dissolution of Ni into the Au-Sn liquid followed by precipitation of a Ni-Sn-Au intermetallic compound; the second stage was a solid-state interdiffusion of Sn, Au, and Ni which occured in the interacted layer and in the original Ni layer. The latter step was a diffusion-controlled process, resulting in a very slow growth rate. Both Au and Sn reacted to form Ni alloy layers of almost equal thickness, regardless of the reaction duration (up to about 5 min). This intensive reaction, however, did not lead to full consumption of the Ti interfacial layer, which provided an excellent adhesion layer between the submount and the metallurgical structure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...