Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 435-442 
    ISSN: 1432-0983
    Keywords: Heat shock ; Recombinant DNA ; Membrane protein ; Nutritional limitation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Using differential hybridization, a gene preferentially expressed during entry into stationary phase has been isolated. Subsequent analysis indicated that this gene corresponds to a heat-shock gene. The nucleotide sequence has been determined. It revealed a 332 aminoacid protein. No similarities to any previously known protein have been noted. The protein is very hydrophobic and is predicted to have a membraneous localisation. In agreement with this hypothesis, the analysis of membrane proteins from stationary-phase cells showed that a strain carrying this gene on a multicopy vector overproduces a protein of 30 kDa. This protein was recognized by antibodies directed against the N-terminal portion of the gene product. Considering its induction in response to heat shock and the apparent molecular weight of its product, this gene was designated HSP30.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 7 (1991), S. 367-378 
    ISSN: 0749-503X
    Keywords: S. cerevisiae ; heat-shock proteins ; starvation ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The protein pattern of yeast cells which have arrested proliferation in response to glucose exhaustion is drastically different from that of exponentially growing cells (Boucherie, 1985). In this study, we used two-dimensional gel electrophoresis to characterize the protein events responsible for these alterations. We found that the induction of heat-shock proteins is one of the major events responsible for these changes. This induction accounts for the synthesis of 18 of the 35 novel polypeptides observed in glucose-limited cells. It was shown to occur in combination with two other protein events: the derepression of carbon catabolite repressed proteins, which accounts for the synthesis of the other novel polypeptides, and an arrest of the synthesis of almost all the proteins present in exponentially growing cells.The time course of each of these events was determined by carrying out a detailed analysis of the pattern of proteins synthesized at vaious stages of a culture exhausting its glucose supply, and by the measurement of the rate of synthesis of individual polypeptides. The results showed in particular that the synthesis of most of the heat-shock proteins synthesized in glucose-limited cells was induced closely before glucose exhaustion, and that this synthesis was transient, climaxing by the time glucose was exhausted. Under the culture condition investigated, the entry into stationary phase associated with glucose limitation began several hours before glucose exhaustion. It was thus concluded that the observed induction of heat-shock proteins is directly related to the nutritional limitation and is independent from the arrest of cell proliferation.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...