Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Chemie Ingenieur Technik - CIT 65 (1993), S. 935-938 
    ISSN: 0009-286X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Chemie Ingenieur Technik - CIT 62 (1990), S. 17-22 
    ISSN: 0009-286X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Application of statistical testing to mixing. Assessment of the homogeneity of mixtures of solids and determination of the necessary mixing times are performed with the aid of statistical testing methods. The results from the basis for necessary decisions. Since reliable statements are fundamentally impossible in mathematical statistics, all such decisions are, with a certain probability, false, i.e. involve some risk. In studies of mixing, the first kind of error concerns the risk of rejecting a mixture although its homogeneity satisfies requirements, while the second kind of error concerns the risk of accepting a mixture although its homogeneity is insufficient. It is shown that barriers can be introduced for both kinds of error, and how to do this. Both the sample size and the limits of the acceptance range for the sample variance are thus laid down. If no decision is to be made concerning acceptance or rejection of a given mixture, but information is merely required about the mixing quality after a given time then this is accomplished by statement of confidence intervals.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0009-286X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Product properties and process engineering. The properties of solids are determined by their chemical composition, their state of dispersion, and their interfacial forces. They are largely responsible for the behaviour of the products during the manufacturing process and for the desired quality characteristics of the finished product. The aim of this survey is to illustrate the influence of particle size distribution and interfacial forces on product properties. The effects shown can be explained with the aid of a few physical modes. The first part shows how product properties can be adjusted to achieve a particular aim, principally by modifying the particle size. These include product-relevant properties such as filtration properties, miscibility, and potential for dust explosion, as well properties relevant to the (final) product such as colour and taste. As the particle size decreases, the forces acting between the particle become increasingly important. The second part of this article therefore focuses on those product properties which can be influenced by way of changes in the cohesive forces. Production-relevant properties are flow properties, bulk density, agglomeration behaviour; product-relevant properties are tablet stability and redispersibility of foods, dyes, etc. Among the cohesive forces, capillary forces deserve particular attention. The paper concludes with an account of their role in the manufacture and use of solids. The pore structure of an agglomerated solid is determined by capillary forces and the external forces required during the manufacturing process.
    Additional Material: 28 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...