Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Crops grown with flood irrigation on slowly draining clay soils are subject to periods of waterlogging during and after each irrigation. The aim of this experiment was to quantify crop responses to these short-term waterlogging events and to assess the modifying effect of different agronomic practices. Maize was grown in undisturbed (U) and repacked (R) profiles of clay loam soil encased in steel cylinders (0.75 m diameter × 1.4 m deep). Two levels of N (high (HN) 300 kg N ha−1, and low (LN) 150 kg N ha−1) were applied as a split dressing. Three periods of flooding (F) of 72, 72 and 48 h were imposed on half the treatments beginning on days 40, 54 and 68 respectively after sowing. The other irrigation regime (C) kept the profile well watered but avoided surface inundation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 19 (1989), S. 127-136 
    ISSN: 1573-0867
    Keywords: Nitrogen loss ; denitrification ; volatilization ; surface fluxes ; ammonia loss ; 15N-methods
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This paper reports a study on the distribution of dinitrogen between the atmosphere, floodwater and porewater of the soil in a flooded rice field after addition of15N-labelled urea into the floodwater. Microplots (0.086 m2) were established in a rice field near Griffith, N.S.W., and labelled urea (80 kg N ha−1 containing 79.25 atoms %15N) was added to the floodwater when the rice was at the panicle initiation stage. Emission of nitrous oxide and dinitrogen was measured directly during the day and overnight, using a cover collection method and gas chromatographic and mass spectrometric analytical methods. Ammonia volatilization was calculated with a bulk aerodynamic method from measurements of wind speed and floodwater pH, temperature and ammoniacal nitrogen concentration. Seven days after urea application the15N2 content of the floodwater and soil porewater was determined and total fertilizer nitrogen loss was calculated from an isotopic balance. Throughout the experimental period gas fluxes were low; nitrous oxide, ammonia and dinitrogen flux densities were less than 5, 170 and 720 g N ha−1 d−1, respectively. The greatest dinitrogen flux density was observed two days after urea addition and this declined to ~ 100 g ha−1 d−1 after seven days. The data indicate that, of the urea nitrogen added, 0.02% was lost to the atmosphere as nitrous oxide, 0.9% was lost by ammonia volatilization, and 3.6% was lost as dinitrogen gas during the 7 days of measurement. At the end of this period 0.028% and 0.002% of the added nitrogen was retained as dinitrogen gas in the floodwater and soil porewater respectively. Recovery of the15N applied as nitrogen gases, plant uptake, and soil and floodwater constituents totaled about 94% of the nitrogen added.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 6 (1988), S. 45-58 
    ISSN: 1573-515X
    Keywords: N2O ; model ; annual emission ; long-term estimate ; N mineralization ; nitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Most of the small external inputs of N to the Shortgrass steppe appear to be conserved. One pathway of loss is the emission of nitrous oxide, which we estimate to account for 2.5–9.0% of annual wet deposition inputs of N. These estimates were determined from an N2O emission model based on field data which describe the temporal variability of N2O produced from nitrification and denitrification from two slope positions. Soil water and temperature models were used to translate records of air temperature and precipitation between 1950 and 1984 into variables appropriate to drive the gas flux model, and annual N2O fluxes were estimated for that period. The mean annual fluxes were 80 g N ha−1 for a midslope location and 160 g N ha−1 for a swale. Fluxes were higher in wet years than in dry, ranging from 73 to 100 g N ha−1y−1at the midslope, but the variability was not high. N2O fluxes were also estimated from cattle urine patches and these fluxes while high within a urine patch, did not contribute significantly to a regional budget. Laboratory experiments using C2H2 to inhibit nitrifiers suggested that 60–80% of N2O was produced as a result of nitrification, with denitrification being less important, in contrast to our earlier findings to the contrary. Intrasite and intraseasonal variations in N2O flux were coupled to variations in mineral N dynamics, with high rates of N2O flux occurring with high rates of inorganic N turnover. We computed a mean flux of 104 g N ha−1 y−1 from the shortgrass landscape, and a flux of 2.6 × 109 g N y− from all shortgrass steppe (25 × 106 ha).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...