Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biotechnology progress 9 (1993), S. 533-538 
    ISSN: 1520-6033
    Source: ACS Legacy Archives
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1424
    Keywords: lipids ; membranes ; Escherichia coli ; temperature adaptation ; fatty acids ; phase separations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The minimum requirement for unsaturated fatty acids was investigated inE. coli using a mutant impaired in the synthesis of vaccenic acid. Exogenously supplied palmitic acid was incorporated by this mutant which led to a reduction in the proportion of cellular unsaturated fatty acids. Growth was impaired as the level of saturated fatty acids approached 76% at 37°C and 60% at 30°C. The basis of this growth inhibition was investigated. Most transport systems and enzymes examined remained active in palmitate-grown cells although the specific activities of glutamate uptake and succinic dehydrogenase were depressed 50%. Fluorescent probes of membrane organization indicated that fluidity decreased with palmitate incorportation. Temperature scans with parinaric acid indicated that rigid lipid domains exist in palmitategrown cells at their respective growth temperature. Freeze-fracture electron microscopy confirmed the presence of phase separations (particle-free areas) in palmitate-grown cells held at their growth temperature prior to quenching. The extent of this separation into particle-free and particle-enriched domains was equivalent to that induced by a shift to 0°C in control cells. The incorporation of palmitate increased nucleotide leakage over threefold. The cytoplasmic enzyme β-galactosidase was released into the surrounding medium as the concentration of unsaturated fatty acid approached the minimum for a particular growth temperature. Lysis was observed as a decrease in turbidity when cells which had been grown with palmitate were shifted to a lower growth temperature. From these results we propose that leakage and partial lysis are the major factors contributing to the apparent decrease in growth rate caused by the excessive incorporation of palmitate. Further, we propose that membrane integrity may determine the minimum requirement for unsaturated fatty acids inE. coli rather than a specific effect on membrane transport and/or membrane-bound enzymes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 11 (1993), S. 151-155 
    ISSN: 1476-5535
    Keywords: Erwinia ; Lignocellulose ; Cellulose ; Ethanol ; Cellulase ; Xylase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The soft-rot bacteriaErwinia carotovora SR38 andErwinia chrysanthemi EC16 have been genetically engineered to efficiently produce ethanol and carbon dioxide as primary fermentation products from cellobiose, glucose and xylose. These organisms have the native ability to secrete a battery of hydrolases and lyases to aid in the solubilization of lignocellulose. Both strains of ethanologenicErwinia fermented cellobiose at twice the rate of the cellobioseutilizing yeasts (Spindler et al., 1992. Biotechnology Letters 14: 403–407) and may be useful in simultaneous saccharification and fermentation processes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Basic research in cardiology 76 (1981), S. 305-312 
    ISSN: 1435-1803
    Keywords: septal artery ; circumflex occlusion ; right cor. occlusion ; collateral blood flow distribution ; collateral pattern
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung Wir untersuchten zwei Modelle des Koronarverschlusses: Dreimonatige Okklusion des Ramus circumflexus und rechte Koronarokklusion. Nach Koronarverschluß fand Kollateralentwicklung in normal aktiven Hunden statt. Kollateralperfusion wurde an einem isolierten Herzpräparat gemessen. Die Resultate erwiesen, daß ein gewisses Schema der Kollateralentwicklung zugrunde liegt. Kollateralperfusion was im allgemeinen zum linken Herzen mit Ramus-circumflexus-Okklusion orientiert und zum rechten herzen mit rechtem Koronarverschluß. Obwohl die Hauptkollateralisierung über epikardiale Kollateralen stattfand, fanden wir aktive intramyokardiale Entwicklung von der Septalarterie in beiden Modellen. Kollateralentwicklung zum Ramus circumflexus nach Verschluß war 6.54mal größer als die zur rechten Koronararterie. Die Resultate deuten auf eine Beziehung zwischen Kollateralwachstum und Größe des ischämischen Gebietes hin.
    Notes: Summary Two models of gradual coronary occlusion (Ameroid method) were compared in this study: 3 months circumflex and 3 months right coronary occlusion. Following coronary occlusion, the collaterals developed in intact, normally active dogs. The collateral flows were assessed in an isolated heart preparation. The results indicated a pattern for collateral development. Collateral flow was directed primarily toward the left heart with circumflex occlusion, and toward the right heart with right occlusion. Although dominant collateralization was via epicardial collaterals, intramyocardial septal collaterals strongly participated in growth development of both models. Collateral growth to the circumflex with circumflex occlusion was 6.54 fold greater than collateral growth to the right coronary artery with right occlusion. The data suggest a relationship between collateral growth and ischemic bed size.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-6776
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Ethanologenic strains ofEscherichia coli have been developed which can express thermostable enzymes for starch saccharification as intracellular products. These enzymes can be harvested within cells at the end of fermentation and liberated by heating to the temperature at which they exhibit maximal activity (60°C to 70°C). Organisms such as these could be used to supply enzymes for yeast-based fermentations while producing ethanol as a co-product.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-6776
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Hemicellulose and residual starch in corn hulls from wet milling and hemicellulose in corn cobs were hydrolyzed by incubation in dilute sulfuric acid at 140°C to 160°C. These hydrolysates were efficiently fermented to ethanol by a genetically engineered derivative ofE. coli B, strain KO11. Fermentation of com hull hydrolysate was complete after 48 h with a final ethanol concentration of 38 grams per liter. Fermentation of corn cob hydrolysate was essentially complete after 24 h due to a lower concentration of sugars and higher levels of inocula. In both cases, ethanol produced was equivalent to 100% of the maximum theoretical yield (0.51 grams ethanol/gram sugar) based on momoner sugar content. ThusE. coli B strain KO11 appears to be an excellent candidate for the efficient production of ethanol from hydrolysates of corn residues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-6776
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Enzymatic hydrolysates of orange peel contain relatively high levels of galacturonic acid and arabinose which are not fermentable to ethanol by yeasts. We observed complete utilization of both sugars during fermentation of peel hydrolysates by the ethanologenic construct of E. coli KO11. The bacterium exhibits a novel pattern of galacturonic acid fermentation producing equimolar amounts of acetate and ethanol accompanied by carbon dioxide.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0991
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The genes encodingZymomonas mobilis pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were expressed inBacillus subtilis YB886(pLOI500) under the control of aBacillus SPO2 phage promoter and caused a 50% reduction of growth rate compared with the unmodified vector. Expression was further confirmed by Western blots, activity stains of native gels, and in vitro measurements of alcohol dehydrogenase activity. Additional strains ofBacillus were also transformed, and all produced similar but low levels of these enzymes. Although higher specific activities will be required for efficient ethanol production, no fundamental barriers exist to the expression of theseZ. mobilis genes inBacillus. Two abundant new proteins (ca. mass 33,000 daltons and 14,000 daltons) were observed in Coomassie Blue-stained gels; they are similar in size to the proteins induced by recombinatn products inEscherichia coli.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 296-303 
    ISSN: 0006-3592
    Keywords: ethanol ; genetic engineering ; Escherichia coli ; lignocellulose ; xylose ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The conversion of xylose to ethanol by recombinant Escherichia coli has been investigated in pH-controlled batch fermentations. Chemical and environmental parameters were varied to determine tolerance and to define optimal conditions. Relatively high concentrations of ethanol (56 g/L) were produced from xylose with excellent efficiencies. Volumetric productivities of up to 1.4 g ethanol/L h were obtained. Productivities, yields, and final ethanol concentrations achieved from xylose with recombinant E. coli exceeded the reported values with other organisms. In addition to xylose, all other sugar constituents of biomass (glucose, mannose, arabinose, and galactose) were efficiently converted to ethanol by recombinant E. coli. Unusually low inocula equivalent to 0.033 mg of dry cell weight/L were adequate for batch fermentations. The addition of small amounts of calcium, magnesium, and ferrous ions stimulated fermentation. The inhibitory effects of toxic compounds (salts, furfural, and acetate) which are present in hemicellulose hydrolysates were also examined.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0006-3592
    Keywords: lignocellulose ; ethanol ; Klebisella oxytoca ; fermentation ; cellulase ; cellulose ; cellobiose ; biomass ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Pretreatment of sugar cane bagasse is essential for a simultaneous saccharification and fermentation (SSF) process which uses recombinant Klebsiella oxytoca strain P2 and Genencor Spezyme CE. Strain P2 has been genetically engineered to express Zymomonas mobilis genes encoding the ethanol pathway and retains the native ability to transport and metabolize cellobiose (minimizing the need for extracellular cellobiase). In SSF studies with this organism, both the rate of ethanol production and ethanol yield were limited by saccharification at 10 and 20 filter papaer units (FPU) g-1 acid-treated bagasse. Dilute slurries of biomass were converted to ethanol more efficiently (over 72% of theoretical yield) in simple batch fermentations than slurries containing high solids albeit with the production of lower levels of ethanol. With high solids (i.e., 160 g acid-treated bagasse L-1), a combination of 20 FPU cellulase g-1 bagasse, preincubation under saccharification conditions, and additional grinding (to reduce particle size) were required to produce ca. 40 g ethanol L-1. Alternatively, almost 40 g ethanol L-1 was produced with 10 FPU cellulase g-1 bagasse by incorporating a second saccharification step (no further enzyme addition) followed by a second inoculation and short fermentation. In this way, a theoretical ethanol yield of over 70% was achieved with the production of 20 g ethanol 800 FPU-1 of commercial cellulase. © 1994 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...