Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular medicine 61 (1983), S. 1029-1037 
    ISSN: 1432-1440
    Keywords: Intracellular Na+, K+, Cl−, H+ HCO 3 − , Ca2+ ; Ouabain ; Phenylalanine ; Glucose ; Renal tubular transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary To disclose possible regulatory mechanisms, the potential difference across the peritubular cell membrane (PDpt) and intracellular activities of sodium (Na i + ), potassium (K i + ), calcium (Ca i 2+ ), bicarbonate (HCO 3i − ) and chloride (Cl i − ) have been traced continuously during inhibition of Na+/K+-ATPase with ouabain. Within 31±4 min following application of ouabain, PDpt decreases (from 57±2 mV) to half and K i + by 37.7±2.2 mmol/l (from 63.5±1.9 mmol/l), Na i + increases by 35.1±4.1 mmol/l (from 13.2±2.4 mmol/l), Ca i 2+ by 0.17 ± 0.2 µmol/l (from 0.09 µmol/l), HCO 3i − by 3.0±1.1 mmol/l (from 15.3±2.0 mmol/l) and Cl i − by 6.2±1.0 mmol/l (from 14.4±1.6 mmol/l). Within the same time the luminal and peritubular cell membrane resistances increase 45±15% and 53±17%, respectively. The increase of the resistances is mainly due to a decrease of K+ conductance, which in turn mainly accounts for the depolarisation of PDpt. Additional experiments demonstrate that the K+ conductance of the peritubular cell membrane is sensitive to the cell membrane potential difference and possibly linked to Na+/K+-ATPase activity. The decline of PDpt probably accounts for intracellular alkalinisation which in turn reduces Na+/H+ exchange. Na+-coupled transport of glucose and phenylalanine decrease in linear proportion to PDpt. The transport of these and probably of similar substances represents the main threat to electrolyte homeostasis of the cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular medicine 60 (1982), S. 1173-1179 
    ISSN: 1432-1440
    Keywords: Distal tubule ; Furosemide ; Ion-sensitive microelectrodes ; Sodium chloride cotransport ; Potassium adaptation ; Distaler Tubulus ; Furosemid ; Ionen-sensitive Microelektroden ; Natrium Chlorid Kotransport ; Kaliumadaptation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung Experimente am distalen Tubulus der doppelt perfundierten Niere des Amphiuma wurden ausgeführt, um die aktiven und passiven Kräfte zu bestimmen, die in die Transportprozesse von Kalium, Natrium und Chlorid involviert sind. Ionen-sensitive und konventionelle Mikroelektroden wurden verwendet, um intrazelluläre Ionenaktivitäten, Zellmembranpotentiale und Kalium- und Chlorid Nettoflüsse unter Kontrollbedingungen und während Hemmung des aktiven Transports abzuschätzen. Auf der Basis folgender Beobachtungen wird ein Natrium-Chlorid Kotransport postuliert, der in der luminalen Zellmembran lokalisiert ist: Entfernung von Natrium aus dem Tubuluslumen hemmt die Furosemid empfindliche Chloridresorption, verringert die luminal positive transepitheliale Potentialdifferenz und führt zu dramatischem Abfall des intrazellulären Chlorids. Die Experimente schlagen ferner vor, daß Kaliumionen im Natrium-Chlorid Transportsystem involviert sind, weil die Kaliumresorption durch Furosemid gehemmt wird, und weil intrazelluläres Natrium signifikant abfällt, wenn die Kaliumionen aus der Tubulusflüssigkeit entfernt werden. Weiters gibt es experimentelle Hinweise, daß nach der Kalium Adaptation der luminale Kalium-Aufnahmemechanismus unterdrückt ist. Unter diesen Bedingungen ist der Kaliumtransport unempfindiich auf Furosemid. Die Daten schlagen ein Furosemid empfindliches Kotransport-System für Natrium, Chlorid und Kalium in der luminalen Zellmembran vor. Die Energie für diesen Carriervermittelten Transportprozeß wird von einem großen „Bergab“-Gradienten von Natrium über die luminale Zellmembran bereitgestellt, der seinerseits durch die in der peritubulären Zellmembran lokalisierte Natriumpumpe aufrechterhalten wird.
    Notes: Summary Experiments were performed in the distal tubule of the doubly-perfused kidney of Amphiuma to determine active and passive forces, involved in the transport processes of potassium, sodium and chloride. Ion-sensitive microelectrodes and conventional microelectrodes were applied to estimate intracellular ion activities, cell membrane potentials and net flux of potassium and chloride under control conditions and during inhibition of active transport. Sodium chloride cotransport, located in the luminal cell membrane is postulated, based on the following observations: Total omission of sodium from the tubular lumen inhibits furosemide sensitive chloride reabsorption, decreases the lumen positive transepithelial potential difference and leads to a dramatic decrease of intracellular chloride. The experiments further suggest that potassium ions are involved in the sodium chloride transport system because potassium reabsorption is inhibited by furosemide and because intracellular sodium falls significantly when potassium ions are removed from the tubular fluid. Furthermore, there is experimental evidence that the luminal potassium uptake mechanism is suppressed after potassium adaptation. Under these conditions potassium transport is found to be insensitive to furosemide. The data suggest a furosemide sensitive contransport system for sodium, chloride and potassium, operative in the luminal cell membrane. The energy for this carrier-mediated transport process is provided by the large “downhill” gradient of sodium across the luminal cell membrane which is maintained by the sodium pump located in the peritubular cell membrane.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford [u.a.] : International Union of Crystallography (IUCr)
    Acta crystallographica 40 (1984), S. 1584-1587 
    ISSN: 1600-5759
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 296 (1982), S. 354-354 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Sprague-Dawley rats (180-230 g) were killed by decapita-tion. The corpus striatum was dissected on ice and homogenized in 10 vols 0.32 M sucrose using a Teflon pestle tissue homogenizer. After centrifugation at l,000g for 15 min, 50 |xl aliquots of the synaptosome-containing supernatant were ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2013
    Keywords: Intracellular sodium activity ; Early distal tubule ; Sodium chloride cotransport ; Potassium ; Sodium sensitive microelectrode
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract From previous studies it is known that a furosemide-sensitive sodium chloride cotransport system is operative in the luminal cell membrane of the early distal amphibian tubule. Since inhibition of sodium chloride cotransport prevents potassium reabsorption in this nephron segment, experiments were carried out to evaluate further the possible relationship between sodium chloride and potassium transport by studying the changes of cellular sodium activity following luminal deletion of potassium ions. Sodium-sensitive liquid ion exchange microelectrodes and conventional microelectrodes were employed to determine the transpithelial potential (PDte), the peritubular cell membrane potential (PDpt) and the intracellular sodium activity (Nai +) in the presence and absence of luminal potassium. The ratio of the luminal cell membrane resistance over the peritubular cell membrane resistance (Rlu/Rpt) was also estimated. When potassium ions are omitted from the luminal perfusate, PDpt hyperpolarizes by some 20 mV, PDte approaches zero and Nai + decreases by about 40%. Rlu/Rpt is more than doubled in the presence of a potassium-free perfusate. Both potential and resistance changes are fully reversible. Similar results were obtained in experiments in which Barium ions (1 mmol/l BaCl2) were present during the luminal potassium substitution. Our results indicate that absence of potassium inhibits luminal sodium chloride entry; as a result of continued peritubular sodium extrusion cellular sodium activity falls. The increase of Rlu/Rpt following perfusion with a potassium-free perfusate is interpreted as a decrease of a significant electrodiffusive potassium conductance in the luminal cell membrane.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2013
    Keywords: Frog kidney ; Proximal tubule ; Glucose transport ; Ouabain ; Cell membrane potential ; Intracellular sodium ; Microelectrodes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Inhibition of basolateral Na+/K+ ATPase by ouabain eventually abolishes transport of glucose. The present study was performed to test, if this effect is due to a dissipation of the electrochemical gradient for sodium or due to a regulatory inhibition of sodium-coupled glucose entry across the luminal membrane at increasing intracellular sodium activity. To this end, proximal convoluted tubules of the doubly perfused isolated frog kidney were perfused alternatively with solutions containing either 5 mmol/l glucose or raffinose. The potential difference across the peritubular cell membrane (PDpt) and across the epithelium (PDpt) has been recorded with conventional and across the peritubular cell membrane with ion selective microelectrodes (PDpt). In the absence of luminal glucose PDpt is (±SEM) −54.0±2.4 mV, PDte=−1.2±2.0 mV and PD pt Na =−96±5 mV. The electrochemical gradient for sodium (μNa+) amounts to 95 mV and intracellular sodium activity to 14 mmol/l (extracellular sodium activity is 74 mmol/l). Luminal application of glucose leads to a rapid depolarisation of PDpt (ΔPDpt=8.6±0.9 mV and PD pt Na (ΔPD pt Na =11.1±3.0 mV) and to hyperpolarisation of PDte (ΔPDte=−0.8±0.2 mV). The peritubular application of ouabain leads to a gradual, reversible and proportional decline of PDpt, PD pt Na and μNa+. Glucose induced ΔPDpt and ΔPD pt Na decrease in parallel to PDpt and PD pt Na , resp. In a separate series, the lumped conductance (G m) of the luminal and basolateral cell membrane has been determined, which amounts to 2.4±0.3 μS/mm (tubule length).G m decreases 23±4%, when PDpt is decreased to half. ΔPDpt andG m allow the calculation of an apparent transport rate (T Glu). Following the application of ouabain,T Glu decreases in linear proportion to PDpt and PD pt Na . There is no evidence for a significant regulatory inhibition ofT Glu. Rather, glucose transport operates in linear proportion to the potential difference across the luminal membrane.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2013
    Keywords: cAMP ; Frog kidney ; Proximal tubule ; Ionsensitive microelectrodes ; Sodium transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Experiments were performed in proximal tubule of the isolated perfused frog kidney to evaluate peritubular cell membrane potentials (PDpt), and the intracellular ion activities of sodium (Nai ü), chloride (Cli −) and potassium (Ki ü) under control conditions and following peritubular application of dibutyryl-cyclic AMP (cAMP, 2·10−4mol·l−1). Conventional and ion-sensitive microelectrodes were applied to record continuously cAMP-induced changes of these parameters in individual proximal tubule cells. Within a few minutes a significant hyperpolarisation of PDpt (Δ=2.0±0.2 mV) occurs simultaneously with a decrease of Nai ü (Δ=2.5±0.5 mmol·l−1). Ki ü increases (Δ=3.6±0.9 mmol·l−1) and Cli − decreases (0.4±0.07 mmol·l−1) slightly, but significantly. With both ions the alterations of the chemical gradient is significantly smaller than the potential shift. PDte is not significantly altered by cAMP. The cAMP-induced hyperpolarisation of PDpt can be observed in presenceand absence of luminal glucose. However, omission of Naü from the luminal perfusate abolishes the hyperpolarising effect of cAMP on PDpt. The results suggest that cAMP reduces sodium entry from the lumen into the cell, thus hyperpolarising the cell membrane and decreasing Nai ü. Persistance of sensitivity of PDpt to cAMP after omission of glucose indicates that other Naü coupled transport processes and/or passive Naü conductance are affected by cAMP. the changes of Ki ü and Cli − are secondary, following the change of PDpt.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2013
    Keywords: Distal tubule ; Sodium chloride transport ; Cellular sodium activity ; Furosemide ; Amphiuma kidney
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Previous experiments had demonstrated that cell chloride activities in early distal tubule cells of Amphiuma are above equilibrium distribution. Chloride activities fell sharply towards electrochemical equilibrium following perfusion of the tubular lumen with furosemide or with sodium-free solutions. These results suggested a furosemide-sensitive sodium chloride cotransport system in the luminal cell membrane. The present experiments were carried out to evaluate directly the electrochemical driving forces acting on sodium ions under similar experimental conditions. Intracellular sodium activity measurements were performed in the doublyperfused kidney of Amphiuma by means of single-barreled liquid ion-exchange microelectrodes. Basolateral cell membrane potential and resistance ratio measurements of tubular cell membranes were also carried out under control conditions and after inhibition of chloride transport by luminal application of furosemide (5 · 10−5 mol/l) or by omission of chloride. Control conditions were characterized by a steep downhill electrochemical gradient for sodium ions from lumen to cell. Inhibition of chloride transport led to a sharp decrease of intracellular sodium activity and to hyperpolarization of the peritubular membrane potential while the resistance ratio of the tubular cell membranes did not change significantly. These results demonstrate the presence of low cellular sodium activities in early distal tubule cells. The sharp decline of cell sodium after furosemide and after luminal chloride removal is consistent with inhibition of a sodium chloride cotransport system and continued peritubular sodium extrusion. The latter can increase the electrochemical gradient of sodium ions beyond that observed under control conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2013
    Keywords: Ouabain ; Frog kidney ; Proximal tubule ; Ion sensitive microelectrodes ; Na+/K+ pump ; Intracellular K+, Na+, Cl−, pH, Ca2+
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Using conventional and ion selective microelectrodes, the effect of ouabain (10−4 mol/l) on peritubular cell membrane potential (PDpt), on intracellular pH (pHi) as well as on the intracellular ion activities of Cl− (Cl i − ), K+ (K i + ), Na+ (Na i + ) and Ca2+ (Ca i 2+ ) was studied in proximal tubules of the isolated perfused frog kidney. In the absence of ouabain (PDpt=−57.0±1.9 mV), the electrochemical potential difference of chloride (apparent {ie6-1} and of potassium {ie6-2} is directed from cell to bath, of H+ {ie6-3}, of Na+ {ie6-4} and of Ca2+ {ie6-5} from bath to cell. Ouabain leads to a gradual decline of PDpt, which is reduced to half (PDpt, 1/2) within 31±4.6 min (in presence of luminal glucose and phenylalanine), and to a decline of the absolute values of apparent {ie6-6}, of {ie6-7}, {ie6-8} and {ie6-9}. In contrast, an increase of {ei6-10} is observed. At PDpt, 1/2 apparent Cl i − increases by 6.2±1.0 mmol/l, pHi by 0.13±0.03, Ca i 2+ by 185±21 nmol/l, and Na i + by 34.2±4.6 mmol/l, whereas K i + decreases by 37.7±2.2 mmol/l. The results suggest that the application of ouabain is followed by a decrease of peritubular cell membrane permeability to K+, by an accumulation of Ca2+, Na+ and HCO 3 - in the cell and by a dissipation of the electrochemical Cl− gradient.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 26 (1981), S. 105-110 
    ISSN: 1432-0649
    Keywords: 42.65
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We present an analysis of the impulse response of four-wave mixing, in the case where the “two-photon term” of the nonlinear susceptibility is dominant. The nonlinear interaction itself will be considered to be steady state. The conditions of negligible pump depletion are considered first. It is shown that the reflected beam has only the character of perfect phase conjugation if the pulse length is longer than the medium length, and the latter is short compared to the characteristic distance of the problem. The “weak-pulse” approximation involving only two coupled equations is compared to the exact four-wave solution, when the medium thickness approaches the critical oscillation threshold. Finally, the stability and existence of steady-state solutions is analyzed for very long media (compared with the oscillation length).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...