Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1975-1979  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 118 (1978), S. 199-206 
    ISSN: 1432-072X
    Keywords: E. coli K-12 ; Galactonate ; 2-Oxo-3-deoxygalactonate ; Genetic mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 1. Escherichia coli K-12 mutants unable to grow on d-galactonate have been isolated and found to be defective in either galactonate dehydratase, 2-oxo-3-deoxygalactonate 6-phosphate aldolase or devoid of both of these enzymes and of 2-oxo-3-deoxygalactonate kinase. 2. 2-Oxo-3-deoxygalactonate kinase and 2-oxo-3-deoxygalactonate 6-phosphate aldolase are still induced by galactonate in mutants lacking galactonate dehydratase, suggesting that galactonate rather than a catabolic product of galactonate is the inducer of the galactonate catabolic enzymes. Synthesis of the enzymes is subject to glucose catabolite repression. 3. Mutants defective in 2-oxo-3-deoxygalactonate 6-phosphate aldolase accumulate 2-oxo-3-deoxygalactonate 6-phosphate when exposed to galactonate and this compound causes general growth inhibition. 4. Secondary mutants that no longer show this inhibition fail to make 2-oxo-3-deoxygalactonate 6-phosphate due to additional defects in galactonate transport, galactonate dehydratase, 2-oxo-3-deoxygalactonate kinase or a putative promoter mutation that prevents formation of these enzymes. 5. A spontaneous mutant capable of growth on 2-oxo-3-deoxygalactonate has been isolated. It has two genetically distinct mutations. One permits constitutive formation of the galactonate catabolic enzymes and the other allows the uptake of 2-oxo-3-deoxygalactonate. Neither mutation on its own permitted growth on 2-oxo-3-deoxygalactonate. 6. Genes specifying the various galactonate catabolic enzymes have been located at min 81.7 on the E. coli K-12 linkage map and probably constitute an operon. The gene sequence in this region was shown to by: pyrE uhp dgo dnaA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Mammalian pyruvate dehydrogenases contain three enzymes, pyruvate decarboxylase (Ei), dihydrolipoate acetyltransferase (£.〉) and dihydrolipoyl dehydrogenase (E:!) bound together in a single complex. They catalyse the conversion of pyruvate, CoA and NAD into acetyl CoA, NADH〉 and CO-2 in ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4919
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Summary In mammalian tissues, two types of regulation of the pyruvate dehydrogenase complex have been described: end product inhibition by acetyl CoA and NADH; and the interconversion of an inactive phosphorylated form and an active non-phosphorylated form by an ATP requiring kinase and a specific phosphatase. This article is largely concerned with the latter type of regulation of the complex in adipose tissue by insulin (and other hormones) and in heart muscle by lipid fuels. Effectors of the two inter-converting enzymes include pyruvate and ADP which inhibit the kinase, acetoin which activates the kinase and Ca2 + and Mg2 + which both activate the phosphatase and inhibit the kinase. Evidence is presented that all components of the pyruvate dehydrogenase complex including the phosphatase and kinase are located within the inner mitochondrial membrane. Direct measurements of the matrix concentration of substrates and effectors is not possible by techniques presently available. This is the key problem in the identification of the mechanisms involved in the alterations in pyruvate dehydrogenase activity observed in adipose tissue and muscle. A number of indirect approaches have been used and these are reviewed. Most hopeful is the recent finding in this laboratory that in both adipose tissue and heart muscle, differences in activity of pyruvate dehydrogenase in the intact tissue persist during preparation and subsequent incubation of mitochondria.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...