Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1975-1979  (7)
  • 1
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Light-dependent 14CO2 fixation by the algae of Diplosoma virens (Hartmeyer) ranged between about 3 and 27 μmoles mg-1 chlorophyll h-1. The principal first products of 14C fixation were 3-phosphoglyceric acid and phosphorylated sugars, indicating that ribulose bisphosphate carboxylase was the primary carboxylation enzyme. The activity of this enzyme in crude extracts of the algae was 4 to 6 μmoles CO2 mg-1 chlorophyll h-1. The principal end product of 14C fixation by these algae in the ascidian host was a water-soluble oligosaccharide which was an α-1,4-glucan. A maximum of 7% of the 14C fixed was found in insoluble materials of the algae or its host after 60 min 14CO2 fixation. Whether the α-1,4-glucan is a product of algal or animal metabolism remains to be determined.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Plant Physiology 29 (1978), S. 379-414 
    ISSN: 0066-4294
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Chloroplasts ; Leaf cells ; Photoinhibition ; Photorespiration ; Photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When isolated intact chloroplasts or cells from spinach (Spinacia oleracea L.) leaves are incubated in the light in the absence of CO2, their capacity for subsequent CO2-dependent photosynthetic oxygen evolution is drastically decreased. This inhibition is light and oxygen-dependent and can be prevented by addition of bicarbonate. It is concluded that the normal dissipation of photosynthetic energy by carbon assimilation and in processes related to photorespiration is an essential condition for the physiological stability of illuminated intact chloroplasts and cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary At constant cladode temperature the stomatal resistance of O. inermis increased when the cladode-air vapor pressure difference was increased and stomatal resistance decreased when the cladode-air vapor pressure difference was lowered. Net CO2 fixation in the dark was very responsive to these humidity dependent changes in stomatal resistance. Net CO2 fixation and stomatal resistance in the light did not respond to changes in cladode-air vapor pressure differences in the light under the conditions tested. When temperature response functions for dark CO2 fixation were examined at constant ambient humidity, the reduction in dark CO2 fixation at higher temperatures was largely due to stomatal closure in response to the increased vapor pressure difference. The water requirement for net CO2 fixation in the dark at typical nocturnal vapor pressure differences was about 10 times lower than that of net CO2 fixation in the light at vapor pressure differences typical of the late afternoon. The role of the stomatal responses to humidity in determining the patterns and rates of net CO2 exchange in the light or dark, and its possible ecological significance is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary 1. The 4 alpine species of Sempervivum (S. arachnoideum L., S. montanum L., S. soboliferum Sims, S. wulfenii Hoppe) analyzed in this study showed acidification during the dark period in their natural habitat. The δ13C value of these species varied according to the water supply at their natural habitat, being less negative at dry sites. These data are consistent with a larger contribution of dark CO2 fixation via Phosphoenolpyruvate-Carboxylase in relation to light CO2 fixation via Ribulose-1, 5-diphosphate Carboxylase. These alpine Sempervivum spp. behave, therefore, like typical CAM-plants. 2. In contrast, the 3 alpine species of Sedum analyzed in this respect (S. acre. L., S. alpestre Vill., S. rosea (L.) Scop.) showed no pronounced dark acidification. The δ13C value of the 8 alpine Sedum species examined in this study (the 3 mentioned above and S. album L., S. atratum L., S. dasyphyllum L., S. reflexum L., S. sexangulare L.) was much more negative than in the Sempervivum spp., indicating that the dark CO2 fixation does not play a great role in the carbon metabolism of the alpine Sedum spp. in the natural habitats. Water supply in the natural habitat has no clear-cut influence on the δ13C value. 3. All alpine species of Saxifraga analysed (S. seloides L., S. oppositifolia L., S. bryoides L., S. aizoides L., S. squarrosa Sieber, S. paniculata Mill., S. caesia L.) show δ13C values typical of C3 plants and they were not influended by the water conditions in the natural sites. Saxifraga paniculata showed no dark acidification in its natural habitat and we suspect that alpine Saxifrages are not CAM plants. 4. Based on δ13C values the alpine plants Pinguicula alpina L., Thesium alpinum L., and Linaria alpina (L.) Mill. are typical C3 plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The daily course of CO2 and H2O exchange in cladodes of Opuntia inermis was studied at four sites in Eastern Australia. On most occasions cladode water contents were high and nocturnal stomatal opening resulted in substantial uptake of CO2 and synthesis of about 130 μ equiv cm-2 of malic acid during the night. Under water stress nocturnal stomatal opening was confined to the latter part of the night and acid synthesis was reduced to about 40 μ equiv cm-2. Night temperature had little effect on acid synthesis, which responded primarily to rainfall and changed from the stressed condition within 2–3 days in irrigation experiments. On many occasions following summer rainfall stomata opened for 4 h in the late afternoon permitting net CO2 fixation which may contribute about 25% of the total carbon assimilated. This CO2 fixation was insufficient to have a marked impact on the δ13C value of the Opuntia cladodes. CO2 fixation in the light occurred in conjunction with maximum dark CO2 fixation under mesic conditions. Dark CO2 fixation rates were 3 to 5 times greater than those recorded in desert cacti under favorable conditions. Relative growth rates calculated on the basic of CO2 exchange correspond to measured relative growth rates of 0.05 g g-1 dry wt day-1 which prevailed for 60–90 days in summer. The capacity for very active CO2 fixation in the dark and light following summer rainfall and the capacity to persist at low levels of metabolic activity through summer drought are discussed in relation to the success of this introduced species in this habitat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2048
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The ratio of deuterium to hydrogen (expressed as δD) in hydrogen released as water during the combustion of dried plant material was examined. The δD value (metabolic hydrogen) determined on plant materials grown under controlled conditions is correlated with pathways of photosynthetic carbon metabolism. C3 plants show mean δD values of-132‰ for shoots and -117‰ for roots; C4 plants show mean δD values of -91‰ for shoots and-77‰ for roots and CAM plants a δD value of-75‰ for roots and shoots. The difference between the δD value of shoot material from C3 and C4 plants was confirmed in species growing under a range of glasshouse conditions. This difference in δD value between C3 and C4 species does not appear to be due to differences in the δD value (tissue water) in the plants as a result of physical fractionation of hydrogen isotopes during transpiration. In C3 and C4 plants the hydrogen isotope discrimination is in the same direction as the carbon isotope discrimination and factors contributing to the difference in δD values are discussed. In CAM plants grown in the laboratory or collected from the field δD values range from-75‰ to +50‰ and are correlated with δ13C values. When deprived of water, the δD value (metabolic hydrogen) in both soluble and insoluble material in leaves of Kalanchoe daigremontiana Hamet et Perr., becomes less negative. These changes may reflect the deuterium enrichment of tissue water during transpiration, or in field conditions, may reflect the different δD value of available water in areas of increasing aridity. Whatever the origin of the variable δD value in CAM plants, this parameter may be a useful index of the water relations of these plants under natural conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...