Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1912
    Keywords: Key words Sheep cardiac Purkinje fibre ; Voltage-clamp ; Pacemaker current ; Use dependence ; Specific bradycardic agent ; ZD 7288
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The inhibition of the pacemaker current (i f) in sheep cardiac Purkinje fibres by ZD 7288 [4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino)pyrimidinium chloride] is lost use-dependently. This disinhibition of i f was investigated by using the two-microelectrode voltage-clamp technique. The pulse protocol consisted of a rest period (holding potential of about –50 mV, 1–10 μmol/l ZD 7288) followed by a train of test pulses (potential negative to –100 mV, stimulation frequency 0.05 Hz). At the beginning of the first test pulse there was an immediate reduction of i f but inhibition was lost during continued stimulation. Activation of i f is sigmoidal and the early delay in current activation was prolonged from 33 ms (no ZD 7288) to 424 ms (10 μmol/l ZD 7288). Therefore hardly any disinhibition occurred during short test pulses (0.5 s). During longer test pulses (5 s, –120 mV, 10 μmol/l) disinhibition developed with a time constant of about 2 s. The inhibition of i f by ZD 7288 was lost voltage-dependently. With 10 μmol/l ZD 7288 the half-maximal disinhibition occurred at –92 mV and the slope factor of the disinhibition/voltage curve (Boltzmann relation) was 4.8 mV. The voltage-dependent disinhibition could be abolished largely by extracellular application of protease (0.5 mg/ml, 7 min). After prior disinhibition, reinhibition at the holding potential (about –50 mV) followed a bi-exponential time course indicating that inhibition may be produced by a fast (τ=0.7 min) and a slow component (τ=20–30 min). Increasing ZD 7288 concentration from 1 to 10 μmol/l accelerated reinhibition, mainly by an increase of the amplitude (A) of the fast component. The ratio A fast/A slow was 0.399 at 1 μmol/l and 2.65 at 10 μmol/l ZD 7288. The reinhibition of i f was unchanged by shifting the holding potential from –50 mV to –20 mV. Trials to wash out the effects of 10 μmol/l ZD 7288 gave two results. The inhibition of i f was slightly reversed after a wash-out of 1.5 h with drug-free solution. A second effect of the drug, the fast reinhibition, could be completely removed by wash-out. In summary i f is inhibited by ZD 7288 at membrane potentials at which the virtual i f gate is closed. Disinhibition occurs during long-lasting hyperpolarization but will hardly be operative in unclamped fibres under physiological conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 340 (1989), S. 696-704 
    ISSN: 1432-1912
    Keywords: Sheep Purkinje fibre ; Outward currents ; Pacemaker current ; (+)-Sotalol ; (±)-Sotalol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This study was aimed to differentiate the action of (+)- and (±)-sotalol (10–1000 μmol/l) on membrane currents which are active during the repolarization of cardiac action potentials Effects where studied in shortened sheep cardiac Purkinje fibres with the two-microelectrode voltage-clamp technique Action potentials were activated at a frequency of 0.25 Hz and membrane currents at 0.03 Hz or 0.05 Hz in most experiments. Out of the currents investigated the transient outward current (ito) reacted most sensitively to (+)- and (±)-sotalol. Ito-amplitude was decreased on the average to 77% of reference at 10 μmol/l and to 53% at 1000 μmol/l (+)- or (±)-sotalol. The maximally available ito-current was decreased but the voltage-dependent control of inactivation was left nearly unchanged. The initial inwardly rectifying current (iKi), which propels the last repolarization phase of the action potential and controls resting potential to a large extent was reduced on the average to 93% of reference at 10 μmol/l and to 62% at 1000 μmol/l (+)- or (±)-sotalol. Time-dependent (delayed) outward current (iK) was on the average not affected by (+)- or (±)-sotalol up to 100 μmol/l and was decreased to 84% of reference current under the influence of 1000 μmol/l. An initial outward current, which is activated at positive membrane potentials (iinst) was not clearly affected by (+)- or (±)-sotalol at concentrations up to 1000 μmol/l Pacemaker current (if) was not influenced by the drugs up to 100 μmol/l. Only at 1000 μmol/l was the amount of available if-current decreased to 79% of reference. (The potential-dependent control of activation was not affected) Time constants of time-dependent currents ito, iK and if did not change in concentrations up to 1000 μmol/l of the drug. Action potential duration increased at (+)- or (±)-sotalol concentrations ≥ 10 μmol/l and maximal prolongation was achieved at concentrations of 100–300 μmol/l Resting potential remained nearly unchanged at these concentrations, but the membranes depolarized at 1000 μmol/l. According to our data action potential prolongation in sheep Purkinje fibres under the influence of (+)- and (±)-sotalol correlates to the drug-induced block to ito-current and inwardly rectifying iK1-current.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 353 (1995), S. 64-72 
    ISSN: 1432-1912
    Keywords: Sheep cardiac Purkinje fibre ; Voltage-clamp ; Pacemaker current ; Use dependence ; Specific bradycardic agent ; ZD 7288
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The inhibition of the pacemaker current (i f) in sheep cardiac Purkinje fibres by ZD 7288 [4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino)pyrimidinium chloride] is lost use-dependently. This disinhibition of i f was investigated by using the two-microelectrode voltage-clamp technique. The pulse protocol consisted of a rest period (holding potential of about -50 mV, 1–10 μmol/l ZD 7288) followed by a train of test pulses (potential negative to -100 mV, stimulation frequency 0.05 Hz). At the beginning of the first test pulse there was an immediate reduction of i f but inhibition was lost during continued stimulation. Activation of i f is sigmoidal and the early delay in current activation was prolonged from 33 ms (no ZD 7288) to 424 ms (10 μmol/l ZD 7288). Therefore hardly any disinhibition occurred during short test pulses (0.5 s). During longer test pulses (5 s, -120 mV, 10 μmol/l) disinhibition developed with a time constant of about 2 s. The inhibition of i f by ZD 7288 was lost voltage-dependently. With 10 μmol/l ZD 7288 the half-maximal disinhibition occurred at -92 mV and the slope factor of the disinhibition/voltage curve (Boltzmann relation) was 4.8 mV. The voltage-dependent disinhibition could be abolished largely by extracellular application of protease (0.5 mg/ml, 7 min). After prior disinhibition, reinhibition at the holding potential (about -50 mV) followed a bi-exponential time course indicating that inhibition may be produced by a fast (τ=0.7 min) and a slow component (τ=20–30 min). Increasing ZD 7288 concentration from 1 to 10 μmol/l accelerated reinhibition, mainly by an increase of the amplitude (A) of the fast component. The ratio A fast/A sIow was 0.399 at 1 μmol/l and 2.65 at 10 μmol/1 ZD 7288. The reinhibition of i f was unchanged by shifting the holding potential from -50 mV to -20 mV Trials to wash out the effects of 10 μmol/l ZD 7288 gave two results. The inhibition of i f was slightly reversed after a wash-out of 1.5 h with drug-free solution. A second effect of the drug, the fast reinhibition, could be completely removed by washout. In summary i f is inhibited by ZD 7288 at membrane potentials at which the virtual i f gate is closed. Disinhibition occurs during long-lasting hyperpolarization but will hardly be operative in unclamped fibres under physiological conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...