Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Journal of Physical Organic Chemistry 4 (1991), S. 141-148 
    ISSN: 0894-3230
    Keywords: Organic Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The influence of solvation on the Z - E isomerization process of three representative molecules of simple push-pull ethylenes [H2N(H)C1=C2(H)R = NO2, COH and CN] derived from aminoethylene was investigated by means of RHF-SCF ab initio calculations at the 3-21 + G level. Solute-solvent interactions were modelled by a cavity model. The shape of the cavity is based on electronic isodensity surfaces. By using an ellipsoidal cavity very close to the isodensity surface, the perturbation due to the solvent takes an analytical form which is incorporated into the Hartree-Fock equations and leads to efficient quantum chemical computations. The polarization of the solutes under the influence of the solvent is noticeable and was analysed in detail. Similarly, the barriers to internal rotations are substantially modified by the solvent: the barrier around the C=C double bond is appreciably decreased in the thermal mechanism whereas its lowering is less important in the anionic mechanism; in contrast, the barrier around the C-1—N bond is slightly increased. The variation of the barriers with the nature of the acceptor group is fairly well reproduced by the computations. The electronic structure of the push-pull ethylene molecules and the modifications of this structure under the influence of the solvent are analysed in detail.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 13 (1992), S. 675-680 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The free energy gradient or Hessian of a molecule interacting with a liquid represented by a dielectric continuum is derived in the self-consistent reaction field formalism. An ellipsoidal approximation of the cavity is proposed with an algorithm to automatically define the ellipsoid from the nuclear coordinates of the atoms. With this approximation, geometry optimization of the solvated molecule becomes very fast. This method has been implemented in some standard ab initio or semiempirical computational codes. As a first test of the method, full geometry optimization of formamide in a high dielectric constant medium reveals that the CPU time needed for one optimization cycle is less than 3% longer for a solvated species than for the corresponding free molecule.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 13 (1992), S. 830-837 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A semi-empirical NDDO method, generalized from a similar scheme at the CNDO/2 level developed previously, is presented to treat very large molecules. The extended molecular system is divided into a relatively small subsystem where substantial chemical changes take place and an environment remaining more-or-less unperturbed during the process. Expanding the wave function on an atomic hybrid basis an SCF procedure is performed for the subsystem in the field of the iteratively determined electronic distribution of the environment. A computer program has been written for the IBM RISC System/6000 530 computer and several test calculations were done for a variety of large classical molecules, like substituted aliphatic hydrocarbons, water oligomers, and a heptapeptide. Protonation energies, proton transfer potential curves, rotational barriers, atomic net charges, and HOMO and LUMO energies, as computed by the exact version of the NDDO method, are fairly well reproduced by our approximation if the subsystem is appropriately defined. © 1992 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 15 (1994), S. 269-282 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Quantum chemical computations on a subset of a large molecule can be performed, at the neglect of diatomic differential overlap (NDDO) level, without further approximation provided that the atomic orbitals of the frontier atoms are replaced by parametrized orthogonal hybrid orbitals. The electrostatic interaction with the rest of the molecule, treated classically by the usual molecular mechanical approximations, is included into the self-consistent field (SCF) equations. The first and second derivatives of energy are obtained analytically, allowing the search for energy minima and transition states as well as the resolution of Newton equations in molecular dynamics simulations. The local self-consistent field (LSCF) method based on these approximations is tested by studying the intramolecular proton transfer in a Gly-Arg-Glu-Gly model tetrapeptide, which reveals an excellent agreement between a computation performed on the whole molecule and the results obtained by the present method, especially if the quantum subsystem includes the side chains and the peptidic unit in between. The merits of the LSCF method are examplified by a study of proton transfer in the Asp69 - Arg71 salt bridge in dihydrofolate reductase. Simulations of large systems, involving local changes of electronic structure, are therefore possible at a good degree of approximation by introducing a quantum chemical part in molecular dynamics studies. This methodology is expected to be very useful for reactivity studies in biomolecules or at the surface of covalent solids. © 1994 by John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...