Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry and Biotechnology  (4)
  • Crosslinking  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 269 (1991), S. 353-363 
    ISSN: 1435-1536
    Keywords: Crosslinking ; radiation ; polyethylene ; density ; crystallinity ; phasedensities ; densityfluctuation ; phasedensityfluctuations ; Crosslink locations and mechanisms ; defects ; lateral grainboundaries
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Small-angle x-ray scattering (SAXS) was used to determine density fluctuation in radiation-induced crosslinked polyethylene of varying degrees of crystallinity. Density fluctuation FL decreases with increasing crystallinity, while it increases linearly with increasing radiation dose or degree of crosslinking. By means of extrapolation, density fluctuations in the crystalline and the amorphous phasesFL c andFL a were obtained. At a given dose,FL a is greater thanFL c . The increase inFL a with radiation is found to be much greater than that ofFL c compared with the initial values at 0 Mrad,FL c showing only a negligible increase event at 312 Mrad. The present findings suggest that crosslinks are not introduced within the crystalline phase; they take place primarily in the noncrystalline phase, in agreement with the conclusions reached previously on the basis of changes in crystalline and amorphous densities in irradiated polyethylene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 263 (1985), S. 109-115 
    ISSN: 1435-1536
    Keywords: Crosslinking ; radiation ; polyethylene ; density ; crystallinity ; d-spacings ; phase densities ; crosslink locations ; lateral grain boundaries ; crosslink mechanisms
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Branched polyethylene irradiated (0–400 Mrad) with a Co60 source at room temperature under vacuum was studied by density, wide- and small-angle X-ray scattering (WAXS and SAXS) measurements. The radiation effects on the structure of bulk, branched polyethylene are quite similar to those observed by others on single crystals or oriented preparations. These effects include changes in bulk densityϱ, crystallinity(w c orv c) and¯d 100 and¯d 200 spacings as a function of irradiation. A decrease in crystallinity is seen to begin at radiation dose ≈100 Mrad whereas lattice expansion indicating onset of an orthorhombic-hexagonal transition can begin as low as 10 Mrads. The decrease in crystallinity can be attributed to additional lattice distortions primarily introduced by the crosslinks occurring at the lateral grain boundaries, while lattice expansion can be associated with the same crosslinking mechanism which begins at the defects both within the crystals as well as those outside the crystals at the lateral grain boundaries. Strong evidence for a primary crosslinking-at-the-defects mechanism has also come fromϱ c andϱ a data obtained in this study as a function of radiation dose. The same data have also led to an excellent correspondence between the measured density crystallinityv c and the measured WAXS crystallinityw c. Without consideration of the effects of crosslinks onϱ c andϱ a one would have obtained a divergence of the two crystallinities, especially at radiation doses greater than 100 Mrads.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 269 (1991), S. 469-476 
    ISSN: 1435-1536
    Keywords: Crosslinking ; radiation ; polyethylene ; density ; crystallinity ; d-spacings ; phase densities ; crosslink locations and mechanisms ; defects ; lateral grain boundaries
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Small-angle x-ray scattering (SAXS) was used to determine the structural changes in polyethylene induced by radiation. The changes in densities of the crystalline and amorphous phases, ρ c and ρ a , were calculated after direct determination of the mean square density fluctuation 〈η2〉. ρ a increases with increasing radiation dose for both linear and branched polyethylene. This accounts for the serious discrepancy between crystallinities determined from wide-angle x-ray scattering and density measurements. This study confirms our previous proposal that crosslinks occur primarily in the noncrystalline phase, most likely at the defects in the lateral grain boundary regions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 446-449 
    ISSN: 0006-3592
    Keywords: urea sensor ; plasma reaction ; poly(propylene) membrane ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Urease was immobilized on the plasma-aminated surface of a hyfrophobic poly(propylene) (PP) membrane. This membrane, with urease matrix on one side while maintaining its original hydrophobic property on the other, was used to construct the urea sensor. The new urea sensors had response sensitivities ranged from 19 mV/decade to 30 mV/decade depending on the conditions of the plasma reaction. The enzyme electrode using single membrane gave a shorter response time as compared to the corresponding conventional electrode employing two seperate PP membranes. The sensitivity of the enzyme electrode increased with increasing buffer pH and reached a maximal level (40 mV/decade) at pH 7.6. The response sensitivity of the electrode was not affected by the change of buffer strength. Deamination of the plasma-modified hydrophobic PP membrane did not occur in aqueous environment judging from the stability of the urea electrode up to 12 days of operation. © 1992 John Wiley & Sons. Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 36 (1990), S. 993-1001 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of reduced nutritional levels (particularly nitrogen source) for immobilized K. fragilis type yeast were studied using a trickle flow, “differential” plug flow type reactor with cells immobilized by adsorption onto an absorbant packing matrix. Minimizing nutrient levels in a feed stream to an immobilized cell reactor (ICR) might have the benefits of reducing cell growth and clogging problems in the ICR, reducing feed preparation costs, as well as reducing effluent disposal costs. In this study step changes in test feed medium nutrient compositions were introduced to the ICR, followed by a return to a basal medium. Gas evolution rates were monitored and logged on a continuous basis, and effluent cell density was used as an indicator of cell growth rate of the immobilized cell mass. Startup of the reactor using a YEP medium showed a rapid buildup of cells in the reactor during the initial 110 h operation. The population density then stabilized at 1.6 × 1011 cells/g sponge. A defined medium containing a complex mix of essential nutrients with an inorganic nitrogen source (ammonium sulfate) was able to maintain 90% of the productivity in the ICR as compared to the YEP medium, but proved unable to promote growth of the immobilized cell mass during startup. Experiments on reduced ammonium sulfate in the defined medium, and reduced yeast extract and peptone in YEP medium indicated that stable productivity could be maintained for extended periods (80 h) in the complete absence of any nutrients besides a few salts (potassium phosphate and magnesium sulfate). It was found that productivity rates dropped by 35-65% from maximal values as nitrogenous nutrients were eliminated from the test mediums, while growth rates (as determined by shed cell density from the reactor) dropped by 75-95%. Thus, nutritional deficiencies largely decoupled growth and productivity of the immobilized yeast which suggests productivity is both growth- and non-growth-associated for the immobilized cells. A yeast extract concentration of 0.375 g/L with or without 1 g/L ammonium sulfate was determined to be the minimum level which gave a sustained increase in productivity rates as compared to the nutritionally deficient salt medium. This represents a 94% reduction in complex nitrogenous nutrient levels compared to standard YEP batch medium (3 g/L YE and 3.5 g/L peptone).
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 36 (1990), S. 975-982 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effects of ethanol on reactor performance were studied in a small, 5-cm packed height, “differential” type immobilized cell reactor. Lactose utilizing yeast cells, Kluyveromyces fragilis, were absorbed to a porous adsorbant sponge matrix in a gas continuous reactor. Step changes in the feed ethanol concentration to the column (10-130 g/L) were used to test the reactor response over extended periods of time (about 30-50 h per dosage level) followed by a return to basal zero inlet ethanol feed. Effluent cell density and effluent cell viability were measured at intervals. An inhibitory response in ethanol productivity to feed dosage ethanol levels above 20 g/L was detected almost immediately, with a near steady state response noted within 2.5 h of initiating the dosage. Feed ethanol levels above 50 g/L resulted in a subsequent gradual decrease in reactor productivity over time, which was associated with a decrease in the fraction of viable shed cells in the reactor effluent. The reactor response to a step removal of the ethanol inhibition was also monitored. Quick and complete rebounding of the fermentation rate to the original basal rate was noted following dosage concentrations of under 50 g/L ethanol. Recovery rates slowed following ethanol dosage levels above 50 g/L. Viable shed cell density improved overtime during the slow recovery periods. Growth rates (as determined by shed cell density) were more strongly inhibited than productivity. Growth responded more slowly to changes in ethanol environment as growth rates at 30 h fell to about 40% of the rates measured 7.5 h after initiation of a dosage level. It is concluded that ethanol contributions to cell injury and death (and consequent ICR performance degradation) may be more important than ethanol inhibition of productivity rates in the long-term operation of immobilized cell reactors at ethanol concentrations over 50 g/L.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 36 (1990), S. 983-992 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The viable fraction of immobilized cells in a bioreactor may be critical in predicting long-term or steady-state reactor performance. The assumption of near 100% viable cells in a bioreactor may not be valid for portions of immobilized cell reactors (ICRs) characterized by conditions resulting in appreciable death rates. A mathematical model of an adsorbed cell type ICR is presented in which a steady-state viable cell fraction is predicted, based on the assumptions of no cell accumulation in the reactor and a random loss of cells from the reactor. Data on cell death rates, cell growth rates, and productivity rates as functions of temperature, substrate, and ethanol concentration for the lactose utilizing yeast K. fragillis were incorporated into this model. The steady-state reactor viable cell fraction as predicted by this model is a strong function of both temperature and ethanol concentration. For example, a stable 20% viable fraction of the immobilized cells is predicted in ICR locations experiencing continuous conditions of either 30 g/L ethanol at 40°C, or 95 g/L ethanol at 25°C. Steady-state ICR “plug flow” concentration profiles and column productivities are predicted at three operating temperatures, 20, 30, and 40°C using two different models for ethanol inhibition of productivity. These profiles suggest that the reactor operating temperature should be low if higher outlet ethanol concentrations are desired. Three reactor design strategies are presented to maximize the viable cell fraction and improve long-term ethanol productivity in ICR's: (1) reducing outlet ethanol concentrations, (2) rotating segments of an ICR between high and low ethanol environments, and (3) simultaneous removal of the ethanol produced from the reactor as it is formed.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...