Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 5 (1989), S. 22-37 
    ISSN: 0887-3585
    Keywords: sequence homology ; tertiary structure prediction ; molecular dynamics ; energy minimization ; hydrophobic interactions ; aromatic ring-ring interactions ; salt bridges ; calcium binding ; thermoactinomyces vulgaris ; extracellular protease ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The Subtilisin family of proteases has four members of known sequence and structure: subtilisin Carlsberg, Subtilisin novo, proteinase K, and thermitase. Using thermitase as a test case, we ask two questions. How good are methods for model building a three-dimensional structure of a protein based on sequence homology to a known structure? And what are the molecular causes of thermostability? First, we compare predicted models of thermitase, refined by energy minimization and varied by molecular dynamics, with the preliminary crystal structure. The predictions work best in the conserve structural core and less well in seven loop regions involving insertions and deletions relative to Subtilisin. Here, variation of loop regions by molecular dynamics simulation in vacuo followed by energy minimization does not improve the prediction since we find no correlation between in vacuo energy and correctness of structure when comparing local energy minima. Second, in order to identify the molecular case of thermostability we confront hypotheses erived by calculation of the details of interatomic interactions with inactivation experiments. As a result, we can exclude salt bridges and hydrophobic interactions as main cause of thermostability. Based on a combination of theoretical and experimental evidence, the unusually tight binding of calcium by thermitase emerges as the most likely single influence responsible for its increased thermostability.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 9 (1991), S. 56-68 
    ISSN: 0887-3585
    Keywords: secondary structure ; tertiary structure ; residue conservation ; sequence variability ; sequence profile ; folding units ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The database of known protein three-dimensional structures can be significantly increased by the use of sequence homology, based on the following observations. (1) The database of known sequences, currently at more than 12,000 proteins, is two orders of magnitude larger than the database of known structures. (2) The currently most powerful method of predicting protein structures is model building by homology. (3) Structural homology can be inferred from the level of sequence similarity. (4) The threshold of sequence similarity sufficient for structural homology depends strongly on the length of the alignment. Here, we first quantify the relation between sequence similarity, structure similarity, and alignment length by an exhaustive survey of alignments between proteins of known structure and report a homology threshold curve as a function of alignment length. We then produce a database of homology-derived secondary structure of proteins (HSSP) by aligning to each protein of known structure all sequences deemed homologous on the basis of the threshold curve. For each known protein structure, the derived database contains the aligned sequences, secondary structure, sequence variability, and sequence profile. Tertiary structures of the aligned sequences are implied, but not modeled explicity. The database effectively increases the number of known protein structures by a factor of five to more than 1800. The results may be useful in assessing the structural significance of matches in sequence database searches, in deriving preferences and patterns for structure prediction, in elucidating the structural role of conserved residues, and in modeling three-dimensional detail by homology.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 11 (1991), S. 52-58 
    ISSN: 0887-3585
    Keywords: protein structure comparison ; superposition ; clustering ; folding units ; sequence alignment ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We present a fully automatic algorithm for three-dimensional alignment of protein structures and for the detection of common substructures and structural repeats. Given two proteins, the algorithm first identifies all pairs of structurally similar fragments and subsequently clusters into larger units pairs of fragments that are compatible in three dimensions. The detection of similar substructures is independent of insertion/deletion penalties and can be chosen to be independent of the topology of loop connections and to allow for reversal of chain direction. Using distance geometry filters and other approximations, the algorithm, implemented in the WHAT IF program, is so fast that structural comparison of a single protein with the entire database of known protein structures can be performed routinely on a workstation. The method reproduces known non-trivial superpositions such as plastocyanin on azurin. In addition, we report surprising structural similarity between ubiquitin and a (2Fe-2S) ferredoxin.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 19 (1994), S. 55-72 
    ISSN: 0887-3585
    Keywords: secondary structure prediction ; prediction of secondary structure class ; prediction of secondary structure content ; evolutionary information ; multiple alignment profiles ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Using evolutionary information contained in multiple sequence alignments as input to neural networks, secondary structure can be predicted at significantly increased accuracy. Here, we extend our previous three-level system of neural networks by using additional input information derived from multiple alignments. Using a position-specific conservation weight as part of the input increases performance. Using the number of insertions and deletions reduces the tendency for overprediction and increases overall accuracy. Addition of the global amino acid content yields a further improvement, mainly in predicting structural class. The final network system has a sustained overall accuracy of 71.6% in a multiple cross-validation test on 126 unique protein chains. A test on a new set of 124 recently solved protein structures that have no significant sequence similarity to the learning set confirms the high level of accuracy. The average cross-validated accuracy for all 250 sequence-unique chains is above 72%. Using various data sets, the method is compared to alternative prediction methods, some of which also use multiple alignments: the performance advantage of the network system is at least 6 percentage points in three-state accuracy. In addition, the network estimates secondary structure content from multiple sequence alignments about as well as circular dichroism spectroscopy on a single protein and classifies 75% of the 250 proteins correctly into one of four protein structural classes. Of particular practical importance is the definition of a position-specific reliability index. For 40% of all residues the method has a sustained three-state accuracy of 88%, as high as the overall average for homology modelling. A further strength of the method is greatly increased accuracy in predicting the placement of secondary structure segments. © 1994 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 19 (1994), S. 256-268 
    ISSN: 0887-3585
    Keywords: unfolding ; solvation ; contact maps ; protein design ; structural domains ; normal modes ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: General patterns of protein structural organization have emerged from studies of hundreds of structures elucidated by X-ray crystallography and nuclear magnetic resonance. Structural units are commonly identified by visual inspection of molecular models using qualitative criteria. Here, we propose an algorithm for identification of structural units by objective, quantitative criteria based on atomic interactions. The underlying physical concept is maximal interactions within each unit and minimal interaction between units (domains). In a simple harmonic approximation, interdomain dynamics is determined by the strength of the interface and the distribution of masses. The most likely domain decomposition involves units with the most correlated motion, or largest interdomain fluctuation time. The decomposition of a convoluted 3-D structure is complicated by the possibility that the chain can cross over several times between units. Grouping the residues by solving an eigenvalue problem for the contact matrix reduces the problem to a one-dimensional search for all reasonable trial bisections. Recursive bisection yields a tree of putative folding units. Simple physical criteria are used to identify units that could exist by themselves. The units so defined closely correspond to crystallographers' notion of structural domains. The results are useful for the analysis of folding principles, for modular protein design and for protein engineering. © 1994 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 28 (1997), S. 72-82 
    ISSN: 0887-3585
    Keywords: protein family analysis ; genome analysis ; homology modeling ; molecular evolution ; protein structure comparison ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The recent determination of the three-dimensional structure of urease revealed striking similarities of enzyme architecture to adenosine deaminase and phosphotriesterase, evidence of a distant evolutionary relationship that had gone undetected by one-dimensional sequence comparisons. Here, based on an analysis of conservation patterns in three dimensions, we report the discovery of the same active-site architecture in an even larger set of enzymes involved primarily in nucleotide metabolism. As a consequence, we predict the three-dimensional fold and details of the active site architecture for dihydroorotases, allantoinases, hydantoinases, AMP-, adenine and cytosine deaminases, imidazolonepropionase, aryldialkylphosphatase, chlorohydrolases, formylmethanofuran dehydrogenases, and proteins involved in animal neuronal development. Two member families are common to archaea, eubacteria, and eukaryota. Thirteen other functions supported by the same structural motif and conserved chemical mechanism apparently represent later adaptations for different substrate specificities in different cellular contexts. © 1997 Wiley-Liss Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 14 (1992), S. 213-223 
    ISSN: 0887-3585
    Keywords: protein folding ; protein structure ; rotamers ; simulated annealing ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: An unknown protein structure can be predicted with fair accuracy once an evolutionary connection at the sequence level has been made to a protein of known 3-D structure. In model building by homology, one typically starts with a backbone framework, rebuilds new loop regions, and replaces nonconserved side chains. Here, we use an extremely efficient Monte Carlo algorithm in rotamer space with simulated annealing and simple potential energy functions to optimize the packing of side chains on given backbone models. Optimized models are generated within minutes on a workstation, with reasonable accuracy (average of 81% side chain χ1 dihedral angles correct in the cores of proteins determined at better than 2.5 Å resolution). As expected, the quality of the models decreases with decreasing accuracy of backbone coordinates. If the backbone was taken from a homologous rather than the same protein, about 70% side chain X1 angles were modeled correctly in the core in a case of strong homology and about 60% in a case of medium homology. The algorithm can be used in automated, fast, and reproducible model building by homology. © 1992 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0887-3585
    Keywords: protein structure ; protein sequences ; protein design de novo ; protein engineering ; computer algorithms ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: What is the current state of the art in protein design? This question was approached in a recent two-week protein design workshop sponsored by EMBO and held at the EMBL in Heidelberg. The goals were to test available design tools and to explore new design strategies. Five novel proteins were designed: Shpilka, a sandwich of two four-stranded β-sheets, a scaffold on which to explore variations in loop topology; Grendel, a four-helical membrane anchor, ready for fusion to water-soluble functional domains; Fingerclasp, a dimer of interdigitating β-β-α units, the simplest variant of the “handshake” structural class; Aida, an antibody binding surface intended to be specific for flavodoxin; Leather - a minimal NAD binding domain, extracted from a larger protein. Each design is available as a set of three-dimensional coordinates, the corresponding amino acid sequence and a set of analytical results. The designs are placed in the public domain for scrutiny, improvement, and possible experimental verification.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 20 (1994), S. 216-226 
    ISSN: 0887-3585
    Keywords: evolutionary information ; multiple alignments ; neural networks ; protein structure prediction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Currently, the prediction of three-dimensional (3D) protein structure from sequence alone is an exceedingly difficult task. As an intermediate step, a much simpler task has been pursued extensively: predicting 1D strings of secondary structure. Here, we present an analysis of another 1D projection from 3D structure: the relative solvent accessibility of each residue. We show that solvent accessibility is less conserved in 3D homologues than is secondary structure, and hence is predicted less accurately from automatic homology modeling; the correlation coefficient of relative solvent accessibility between 3D homologues is only 0.77, and the average accuracy of predictions based on sequence alignments is only 0.68. The latter number provides an effective upper limit on the accuracy of predicting accessibility from sequence when homology modeling is not possible. We introduce a neural network system that predicts relative solvent accessibility (projected onto ten discrete states) using evolutionary profiles of amino acid substitutions derived from multiple sequence alignments. Evaluated in a cross-validation test on 238 unique proteins, the correlation between predicted and observed relative accessibility is 0.54. Interpreted in terms of a three-state (buried, intermediate, exposed) description of relative accessibility, the fraction of correctly predicted residue states is about 58%. In absolute terms this accuracy appears poor, but given the relatively low conservation of accessibility in 3D families, the network system is not far from its likely optimal performance. The most reliably predicted fraction of the residues (50%) is predicted as accurately as by automatic homology modeling. Prediction is best for buried residues, e.g., 86% of the completely buried sites are correctly predicted as having 0% relative accessibility. © 1994 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 18 (1994), S. 309-317 
    ISSN: 0887-3585
    Keywords: protein structure prediction ; predicted contact maps ; correlated mutations ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The maintenance of protein function and structure constrains the evolution of amino acid sequences. This fact can be exploited to interpret correlated mutations observed in a sequence family as an indication of probable physical contact in three dimensions. Here we present a simple and general method to analyze correlations in mutational behavior between different positions in a multiple sequence alignment. We then use these correlations to predict contact maps for each of 11 protein families and compare the result with the contacts determined by crystallography. For the most strongly correlated residue pairs predicted to be in contact, the prediction accuracy ranges from 37 to 68% and the improvement ratio relative to a random prediction from 1.4 to 5.1. Predicted contact maps can be used as input for the calculation of protein tertiary structure, either from sequence information alone or in combination with experimental information. © 1994 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...