Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • allometric equations  (2)
  • Carbon isotope discrimination  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 121 (1999), S. 458-466 
    ISSN: 1432-1939
    Keywords: Key words Forest productivity ; Koa ; Hawaii mountain forests ; Water supply ; Carbon isotope discrimination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  We studied changes in stand structure, productivity, canopy development, growth efficiency, and intrinsic water use efficiency (WUE=photosynthesis/stomatal conductance) of the native tree koa (Acacia koa) across a gradient of decreasing rainfall (2600–700 mm) with increasing elevation (700–2000 m) on the island of Hawaii. The stands were located on organic soils on either smooth (pahoehoe) or rough (aa) lava flows. In the greenhouse, we also examined growth and WUE responses to different water regimes of koa seedlings grown from seeds collected in the study area. We tested the hypotheses that (1) stand basal area, aboveground net primary productivity (ANPP), leaf area index (LAI), and growth per unit leaf area decreased with decreasing rainfall, (2) WUE increased with decreasing rainfall or water supply, and (3) WUE responses were caused by stomatal limitation rather than by nutrient limitations to photosynthesis. The carbon isotope composition of phyllode tissues (δ13C) was examined as an integrated measure of WUE. Basal area and LAI of koa stands on both pahoehoe and aa lava flows, and ANPP on aa lava flows decreased with elevation. Basal area, LAI, and ANPP of koa in mixed stands with the exotic tropical ash (Fraxinus udhei) were lower compared to single-species koa stands at similar elevations. Along the gradient, phyllode δ13C (and therefore WUE) increased with elevation from –30.2 to –26.8‰. Koa in mixed stands exhibited higher (less negative) δ13C than in single-species stands suggesting that koa and tropical ash competed for water. In the greenhouse, we observed the same trend observed in the field, as phyllode δ13C increased from –27.7 to –24‰ as water supply decreased. Instantaneous gas exchange measurements in the greenhouse showed an inverse correlation of both maximum (morning) photosynthesis (A) and conductance (g) with δ13C values and, also, a good agreement between instantaneous (A/g) and integrated measures of WUE. Phyllode δ13C was not correlated with foliar concentrations of N or other nutrients in either the field or the greenhouse, indicating that differences in δ13C were caused by stomatal limitation rather than by nutrient-related changes in photosynthetic capacity. This study provided evidence that long-term structural and growth adjustments as well as changes in WUE are important mechanisms of koa response to water limitation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9680
    Keywords: Acacia koa ; allometric equations ; canopy analysis ; cattle grazing ; LAI-2000
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Tree growth and competition with other vegetation are strongly affected by leaf area, which can be modified by livestock browsing in silvopastoral systems. We studied the relationship of leaf area to stem diameter and sapwood area of koa (Acacia koa), a valuable hardwood tree species native to Hawaii. Because browsing alters allometric relationships, we compared harvest data with two non-destructive optical techniques (LAI-2000 canopy analyzer and photographic estimation of projected crown area). Destructive harvests of 30 trees showed that leaf area was equally well correlated with the diameter at breast height (dbh) or sapwood area of trees ranging from 2 to 16 cm in diameter, 1.3 m above ground level. Both optical techniques correlated with the leaf areas obtained by destructive analysis, but the photographic estimation of projected crown area provided more reliable estimates than the canopy analyzer. The photographic method based on projected crown area provided reliable estimates of leaf area removal within the browse zone (less than 2 m height). this method provides a simple, low-cost means of obtaining non-destructive estimates of changes in leaf area in isolated trees.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5095
    Keywords: allometric equations ; Fraxinus uhdei ; Hawaii ; stand biomass estimates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Allometric equations were generatedby harvesting tropical ash (Fraxinus uhdei(Wenzig) Lingelsh) trees growing on organic uplandssoils in the island of Hawaii. One of these equationswas used to estimate aboveground biomass of ten maturestands in the same area. Results indicated that theequation developed in situ, equations for white ash(Fraxinus americana L.), and generalizedfunctions for temperate and tropical forests, providedrelatively similar biomass estimates. Averagedifferences between biomass estimates from the testedequations (excluding the one for moist tropicalforests) and the function generated in situ rangedfrom 10 to 24%. One of the equations for white ashhad the lowest sum of residuals followed by thegeneralized equation for temperate forests. Theresults suggested commonality among biomass estimatesand, therefore, among relationships between treedimensions probably because most of the abovegroundtree biomass is in stem and branches, and thesecompartments are more stable than foliage mass. Equations to estimate commercial biomass and leaf areaof tropical ash are also provided.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...