Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 1 (1966), S. 48-64 
    ISSN: 1432-1106
    Keywords: Spontaneous post-synaptic potentials (EPSPs, IPSPs) ; Motor cortex ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung 1. Im motorischen Cortex von ausgewachsenen Katzen (mittlere Nembutalnarkose) wurden spontane postsynaptische Potentiale (PSP) mit intrazellulären Mikroelektroden untersucht. Die spontanen EPSP wurden mit ausgelösten EPSP nach schwachen Reizen in spezifischen (VL) und unspezifischen (CM) Thalamuskernen verglichen. 2. Spontane EPSP treten entweder einzeln oder gruppiert auf. spontane IPSP sind seltener und machen nur 3–10% aller spontanen PSP aus. Die kleinsten EPSP haben eine Amplitude von 150–200 μV, daneben kommen kleinere, flache Schwankungen des Membranpotentials vor. Die mittlere Amplitude von spontanen EPSP liegt bei 0.7 mV. Amplitudenhistogramme spontaner EPSP unterscheiden sich nicht wesentlich von solchen, die durch schwache CM- oder VL-Reize ausgelöst sind. 3. Die Anstiegssteilheit von spontanen EPSP liegt zwischen 2 und 15 msec. Es besteht keine konstante Beziehung zwischen Amplitude und Anstiegssteilheit. Der Potentialabfall ist annähernd exponentiell, die Zeitkonstante liegt zwischen 8 und 12 msec und ist damit etwas länger als die passive Neuronzeitkonstante (8.5±2.2 msec nach Creutzfeldt u. Mitarb., 1964b). Es bestehen keine konstanten Unterschiede der Zeitverläufe von spontanen, durch VL- oder CM-Reiz ausgelösten EPSP-Einheiten. 4. Die Intervallhistogramme von spontanen EPSP sind verschieden je nach dem, ob alle Intervalle oder nur Perioden mit sporadischer, nicht-gruppierter Aktivität ausgezählt werden. Nicht gruppierte EPSP haben längere mittlere Intervalle (70–80 msec). 5. Nach überschwelligen Thalamusreizserien ist sowohl die spontane als auch die reizinduzierte PSP-aktivität vermindert. Es kann jedoch nicht entschieden werden, inwieweit corticale und inwieweit thalamische Mechanismen für diese post-tetanische Depression verantwortlich sind. 6. Während reversibler Deafferentierung des Cortex durch K+-depolarisation afferenter Fasern und im chronisch isolierten Cortex finden sich keine spontanen PSP mehr, obwohl EPSP und IPSP am isolierten Cortex durch epicorticale Reize noch ausgelöst werden können. 7. Aus den Befunden wird geschlossen, daß die beobachteten PSP durch afferente und collaterale Faseraktivität ausgelöst sind. Für echte „Miniaturpotentiale” entsprechend Beobachtungen an Muskelendplatten findet sich kein Anhalt. Insofern repräsentiert das „synaptische Rauschen” corticaler Zellen die konvergierende Afferenz dieser Zellen und kann nicht als echtes „spontanes Rauschen” angesehen werden.
    Notes: Summary Spontaneous post-synaptic potentials (PSP's) of neurones of the motor cortex are analysed (intracellular recording, Nembutal anesthesia, cats). Distinct EPSP's either appear grouped or more sporadically distributed. Spontaneous EPSP's only represent about 3–10% of all spontaneous PSP's. The mean amplitude of EPSP's is about 0.7 mV. The smallest EPSP's have an amplitude of 150–200 μV, smaller slow fluctuations of the membrane potential (MP) are seen occasionally. Amplitude histograms of spontaneous EPSP's are similar to those of evoked EPSP units following weak thalamic stimulation. — The rising time of spontaneous EPSP's varies between 2 and 15 msec. and is not correlated with the peak amplitude. The decay is almost exponential, the time constant is between 8 and 12msec., thus being slightly higher than the neurone time constant of cortical pyramidal cells (8.5±2.2 msec. Creutzfeldt et al., 1964b). No consistant differences in time course and amplitude of “EPSP units” after VL and CM thalamic stimulation and of spontaneous EPSP's was found. Cortical and thalamic components of post-tetanic depression of spontaneous and evoked PSP activity cannot be distinguished. Interval histograms are different whether all EPSP's during sporadic and grouped activity or whether only sporadically appearing EPSP's are counted. Non-grouped EPSP's show longer mean intervals (between 70 and 80 msec.). — During reversible deafferentation with K+-depolarization of afferent fibers and in the chronically isolated cortex no spontaneous EPSP's or IPSP's are found eventhough membrane fluctuations of cells in the latter preparation may sometimes be difficult to distinguish from real EPSP's. In the chronically isolated cortex, EPSP's and IPSP's can still be elicited by epicortical stimulation. — From these findings it is concluded that the observed spontaneous PSP's represent “unit” EPSP's and IPSP's due to afferent and collateral fiber activity and that no true miniature potentials due to spontaneous liberation of transmitter substance can be recorded. Thus, the “synaptic noise” of cortical neurones represents convergent activity on these cells and consequently cannot be considered as true “spontaneous noise”.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 49 (1983), S. 13-27 
    ISSN: 1432-1106
    Keywords: Cortex around sulcus suprasylvius (PSSC) ; Cat ; Visual association cortex ; Association fibres
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This paper reports on experiments in which the effect of disconnexion of association fibres from Area 17/18 to the posterior suprasylvian cortex (PSSC) was investigated. In the control experiments, all neurons had large receptive fields in the central 5–10 ° of the visual field without detailled retinotopy. In the medial bank of PSSC, receptive fields were located in the contralateral visual field, while receptive fields of neurons in the lateral bank were located ipsilaterally. Neurons in PSSC could be excited by electrical stimulation of the ipsilateral Area 17/18 boundary, of the medial pulvinar (N. lat. post., pars, lat.) and the lateral geniculate body. About 2/3 of all neurons could be excited from all these regions, although with varying latencies. After acute and chronic subpial undercutting of the representation of the central 5–10 ° of the ipsilateral area 17/18, visual response properties including direction sensitivity, receptive field size and ocularity of PSSC-neurons in the medio-posterior bank did not change significantly. After ablation of the whole contralateral visual cortex (including PSSC and a wide region of the contralateral Clare-Bishop area) the input from the ipsilateral eye was considerably diminished, but other response properties did not change significantly. These essentially negative findings are discussed in relation to different findings of other authors, and it is argued that the subpial undercutting of only the central visual field representation may have prevented damage to the ipsilateral suprasylvian cortex and its afferents, which is difficult to avoid if the whole area 17 is ablated by suction. It is proposed, that association fibres may only “unspecifically” excite neurons in related association areas rather than impose onto them specific response features. These latter are derived, also in association areas, essentially from their thalamic afferents and their intracortical interaction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: Axonal branching ; Vestibulo-ocular ; Vestibulo-collic ; Neck motoneurons ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Unit activities of 148 secondary vestibular neurons related to the posterior semicircular canal were recorded extracellularly in anesthetized cats. Axonal projections of these neurons were examined by their antidromic responses to stimulation of the excitatory target motoneurons of the contralateral (c-) inferior rectus muscle (IR) and bilateral (bi-) motoneuron pools of longus capitis muscles, neck flexors, in the C1 segment (C1LC). The neurons were classified into 4 groups according to their axonal projections. The first group of neurons, termed vestibulo-oculo-collic (VOC) neurons, sent axon collaterals both to the c-IR motoneuron pool and to the c-C1LC motoneuron pool. The majority of them (72%) were located in the descending nucleus. The second group of neurons were termed vestibuloocular (VO) neurons and sent their axons to the c-IR motoneuron pool but not to the cervical cord. Most of them (86%) were located in the medial nucleus. The third group of neurons, termed vestibulo-collic (contralateral) (VCc) neurons, sent axons to the cC 1LC motoneuron pool via the contralateral ventral funiculus but not to the oculomotor nuclei. They were mostly (75%) found in the descending nucleus. The last group of neurons were vestibulo-collic (ipsilateral) (VCi) neurons, which gave off axons to the ipsilateral (i-) C1LC motoneuron pool via the ipsilateral ventral funiculus but not to the oculomotor nuclei. One of them also sent an axon collateral to the c-C1LC motoneuron pool. The majority of them (74%) were located in the ventral part of the lateral nucleus. It was also observed in some of the VOC and VCi neurons that they produced unitary EPSPs in the c-C1LC and i-C1LC motoneurons, respectively. Their synaptic sites were estimated to be on the cell somata and/or proximal dendrites of the motoneurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 32 (1978), S. 377-388 
    ISSN: 1432-1106
    Keywords: Posterior canal nerve ; EPSP ; IPSP ; Extraocular motoneurons ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In the anesthetized cat, the posterior canal nerve (PCN) was stimulated by electric pulses and synaptic responses were recorded intracellularly in the three antagonistic pairs of extraocular motoneurons. Pure reciprocal effects were obtained in the motoneurons innervating the antagonistic pair of ipsilateral oblique muscles and the antagonistic pair of contralateral vertical rectus muscles. These responses consisted of low threshold disynaptic excitatory postsynaptic potentials (EPSPs) in either the contralateral superior oblique (c-SO) (trochlear) or contralateral inferior rectus (c-IR) motoneurons and of disynaptic inhibitory postsynaptic potentials (IPSPs) in either the ipsilateral inferior oblique (i-IO) or ipsilateral superior rectus (i-SR) motoneurons. In addition, disynaptic IPSPs were also found in (i-SO) motoneurons. Mixtures of low threshold (dior trisynaptic) EPSPs and IPSPs were found in all other extraocular motoneurons except for the contralateral lateral rectus (c-LR) motoneurons. These results may afford a basis for the characteristic eye movements induced by vertical canal nerve stimulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1106
    Keywords: Anterior semicircular canal ; Vestibular nuclei ; Vestibulo-collic ; Neck motoneuron ; Unitary EPSP ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Unit activites of secondary vestibular neurons that selectively responded to stimulation of the anterior semicircular canal nerve (ACN) were recorded extracellularly in the anesthetized cat. Axonal pathways and projections in the spinal cord of the ACN-activated neurons were examined by recording their antidromic responses to stimulation of the lateral and medial vestibulospinal tracts (LVST and MVST), and the bilateral neck extensor motoneuron pools in the C1segment (C1dorsal rami [DR] motoneuron pools). In order to determine whether the neurons had ascending axon collaterals to the extraocular motoneurons, the contralateral (c-) inferior oblique (IO) motoneuron pool was also stimulated. Twenty-seven neurons sent their axons to the ipsilateral (i-) C1DR motoneuron pool via the LVST without any projection to the extraocular motoneuron pool. All the cells except one were located in the ventral part of the lateral vestibular nucleus. This pathway produced monosynaptic EPSPs with short time-to-peak and short half-width in C1DR motoneurons (16/16 motoneurons). Eight neurons sent axons to the i-C1DR motoneuron pool via the MVST without any to the extraocular motoneuron pool. Cell somata were located in the descending nucleus or in the ventral part of the lateral nucleus. These neurons did not produce postsynaptic potentials (PSPs) in any C1DR motoneurons. All thirty-five neurons sending axons to the c-C1DR motoneuron pool have ascending axon collaterals to the c-IO motoneuron pool.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...