Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Diluting segment ; Cell fusion ; Intracellular pH ; Cell membrane potential ; Frog kidney
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The dependence of intracellular pH (pHi) and transepithelial H+ secretion on the cell membrane potential (V m) was tested applying pH-sensitive and conventional microelectrodes in giant cells fused from single epithelial cells of the diluting segment and in intact tubules of the frog kidney. An increase of extracellular K+ concentration from 3 to 15 mmol/l decreasedV m from −49±4 to −29±1 mV while pHi increased from 7.44±0.04 to 7.61±0.06. Addition of 1 mmol/l Ba2+ depolarizedV m from −45±3 to −32±2 mV, paralleled by an increase of pHi from 7.46±0.04 to 7.58±0.03. Application of 0.05 mmol/l furosemide hyperpolarizedV m from −48±3 to −53±3 mV and decreased pHi from 7.47±0.05 to 7.42±0.05. In the intact diluting segment of the isolated-perfused frog kidney an increase of peritubular K+ concentration from 3 to 15 mmol/l increased the luminal pH from 7.23±0.08 to 7.41±0.08. Addition of Ba2+ to the peritubular perfusate also increased luminal pH from 7.35±0.07 to 7.46±0.07. Addition of furosemide decreased luminal pH from 7.32±0.03 to 7.24±0.05. We conclude: cell depolarization reduces the driving force for the rheogenic HCO 3 − exit step across the basolateral cell membrane. HCO 3 − accumulates in the cytoplasm and pHi increases. An alkaline pHi inactivates the luminal Na+/H+ exchanger. This diminishes transepithelial H+ secretion. Cell hyperpolarization leads to the opposite phenomenon. Thus, pHi serves as signal transducer between cell voltage and Na+/H+ exchange.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Ouabain ; Cell membrane potential ; Cell membrane resistance ; Potassium conductance ; Bicarbonate conductance ; Proximal tubule ; Amphibian kidney
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract According to a previous study from this laboratory, the electrochemical gradient for potassium across the peritubular cell membrane of proximal tubules in the isolated perfused frog kidney increases following the application of ouabain. In order to test, if this phenomenon were due to a decrease of potassium conductance, the effects of ouabain on cell membrane resistances and the sensitivity of the peritubular cell membrane potential difference (PDpt) to step changes of peritubular potassium and bicarbonate concentration were studied. In the absence of ouabain, PDpt averaged −60±3 mV (n=25). A step increase of peritubular potassium concentration from 3 to 18 mmol/l (pH 8.07) depolarises PDpt (ΔPDk) by +24±2 mV (n=8). An increase of bicarbonate from 20 to 40 mmol/l (pH 8.07) hyperpolarises PDpt (ΔPDb) by −2.8±0.4 mV (n=9). The resistance of the luminal and peritubular cell membranes in parallel (R m) amounts to 45±9 kΩ cm (tubule length) (n=4) and the voltage divider ratio (VDR) to 1.4±0.2 (n=7). The resistance of the cellular cable (cellular core,R c) approaches 131±37 MΩ/cm (n=4). Peritubular application of 0.1 mmol/l ouabain leads to a gradual decline of PDpt (t 1/2 approx. 30 min), to an increase ofR m, a decrease of ΔPDk and an increase of ΔPDb. VDR andR c are not changed significantly. The data point to a functional link between the sodium/potassium ATPase and the potassium conductance of the peritubular cell membrane.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2013
    Keywords: Frog kidney ; Proximal tubule ; Glucose transport ; Ouabain ; Cell membrane potential ; Intracellular sodium ; Microelectrodes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Inhibition of basolateral Na+/K+ ATPase by ouabain eventually abolishes transport of glucose. The present study was performed to test, if this effect is due to a dissipation of the electrochemical gradient for sodium or due to a regulatory inhibition of sodium-coupled glucose entry across the luminal membrane at increasing intracellular sodium activity. To this end, proximal convoluted tubules of the doubly perfused isolated frog kidney were perfused alternatively with solutions containing either 5 mmol/l glucose or raffinose. The potential difference across the peritubular cell membrane (PDpt) and across the epithelium (PDpt) has been recorded with conventional and across the peritubular cell membrane with ion selective microelectrodes (PDpt). In the absence of luminal glucose PDpt is (±SEM) −54.0±2.4 mV, PDte=−1.2±2.0 mV and PD pt Na =−96±5 mV. The electrochemical gradient for sodium (μNa+) amounts to 95 mV and intracellular sodium activity to 14 mmol/l (extracellular sodium activity is 74 mmol/l). Luminal application of glucose leads to a rapid depolarisation of PDpt (ΔPDpt=8.6±0.9 mV and PD pt Na (ΔPD pt Na =11.1±3.0 mV) and to hyperpolarisation of PDte (ΔPDte=−0.8±0.2 mV). The peritubular application of ouabain leads to a gradual, reversible and proportional decline of PDpt, PD pt Na and μNa+. Glucose induced ΔPDpt and ΔPD pt Na decrease in parallel to PDpt and PD pt Na , resp. In a separate series, the lumped conductance (G m) of the luminal and basolateral cell membrane has been determined, which amounts to 2.4±0.3 μS/mm (tubule length).G m decreases 23±4%, when PDpt is decreased to half. ΔPDpt andG m allow the calculation of an apparent transport rate (T Glu). Following the application of ouabain,T Glu decreases in linear proportion to PDpt and PD pt Na . There is no evidence for a significant regulatory inhibition ofT Glu. Rather, glucose transport operates in linear proportion to the potential difference across the luminal membrane.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...