Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cerebellum  (2)
  • Microcephaly  (2)
  • Nephrosialidosis  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 59 (1983), S. 41-47 
    ISSN: 1432-0533
    Keywords: Cytosine arabinoside ; Cerebellum ; External granular layer ; Purkinje cell ; Heterotopic granule cell
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This study was undertaken to elucidate the relationship between the time of destruction of the external granular layer and subsequent cerebellar abnormalities. Mice were injected s. c. with 30 mg/kg body weight (b. wt.) of cytosine arabinoside on days 2, 3, and 4, on days, 4, 5, and 6, on days 7, 8, and 9, and on days 10, 11, and 12, and designated as group I, II, III, and IV, respectively. In group I, disarrangement of Purkinje cells and heterotopic granule cells in the molecular layer were observed on all lobes of cerebellum. Heterotopic granule cells were seen on all lobes in group II, whereas disarrangement of Purkinje cells was observed only in the region from the anterior to middle lobes. In group III, heterotopic granule cells were limited to the area from anterior to middle lobes, but there was no disarrangement of Purkinje cells. Group IV cerebellum did not show abnormal cytoarchitecture. Golgi-Cox studies showed abnormal arborization of Purkinje cells in each experimental group. They were arbitrarily classified into inverted Purkinje cells, lying Purkinje cells, T-shaped Purkinje cells, and poorly arborized Purkinje cells. The earlier the postnatal treatment the more severe were the abnormalities of Purkinje cell dendrite. According to the electron-microscopic study, some glomerular synaptic complexes, which are normally confined to the internal granular layer, were observed even in the molecular layer in groups I, II, and III. Some of the Purkinje cell dentritic spines did not make synapses with parallel fibers in any of the experimental groups. The results indicate that severity of abnormal arborization of Purkinje cells is dependent on the period of destruction of the external granular layer. Formation of heterotopic granule cells was dependent on the destruction of the external granular layer up to day 10 after birth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0533
    Keywords: Severe sialidosis ; α-Neuraminidase deficiency ; Neuropathology ; Congenital ascites ; Nephrosialidosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary A 56-day-old infant with α-neuraminidase deficiency, whose clinical features included severe edema of extremities and ascites which resembled those in severe infantile sialidosis, was autopsied. Perforation, whose pathogenesis was unclear, was found on the descending portion of the duodenum. Light and electron microscope studies showed that neurons in the cerebral and cerebellar corticies, and the thoracic spinal cord contained membrane-bound vacuoles but no membranous cytoplasmic bodies. Zebra bodies were found only in the neurons of the spinal cord. The neurons in the paraganglion and in the Auerbach's myenteric plexus were also distended with numerous membrane-bound vacuoles. Hepatocytes, endothelial cells and Kupffer cells in the liver and glomerular and tubular epithelial cells in the kidney were swollen with a number of vacuoles although the patient showed none of the clinical features of renal involvement. These pathological changes were similar to those in nephrosialidosis reported by Le Sec et al. [Arch Fr Pediatr 35:819–829 (1978)].
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0533
    Keywords: Cytosine arabinoside ; Mice ; Microcephaly ; Cerebral cortex ; Hippocampus ; Abnormal cytoarchitecture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Pregnant mice were treated with cytosine arabinoside on days 13.5 and 14.5 of pregnancy. Brains of the offspring were studied histologically. The matrix layer of the embryonic brains was extensively destroyed 12h after the injection of cytosine arabinoside, but regenerated partially on day 17 of gestation. In the cerebral cortex of 1-, 3-, and 5-day-old treated mice, abnormal clusters of young neurons were found on the surface of the developing cerebral cortex. Some clusters still had a supply of immature neurons from the remnants of the regenerated matrix layer. After 20 days, the clusters became gradually indistinct, although some vestigial groups of neurons were observed even after 120 days. In the hippocampus of young mice, the pyramidal cells decreased in number and were disarranged. Heterotopic pyramidal cell masses were found in the stratum radiatum and in the molecular layer of the dentate gyrus. Apical dendrites of pyramidal cells exhibited abnormal arborization. It was demonstrated by3H-thymidine autoradiography that young neurons in the abnormal clusters in the cerebral cortex were those produced in the matrix layer regenerated after the destructive change by cytosine arabinoside.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0533
    Keywords: Cytosine arabinoside ; Cerebellum ; External granular layer ; Purkinje cells ; Synaptogenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary ICR-JCL strain mice were injected subcutaneously with 30 mg/kg body weight of cytosine arabinoside at 2, 3, and 4 days of age. This chemical prevented the production of the basket cells, stellate cells, and granule cells in the external granular layer of the cerebellum. Decrease in number of these microneurons affected the normal synaptic connections between the Purkinje cells and the microneurons, thus causing the disarrangement and abnormal arborization of the Purkinje cells. Of the three types of microneurons, the basket and a few stellate cells played a more important role in the disarrangement of the Purkinje cells and abnormal arborization of their primary dendrites than the granule cells did. Abnormal outgrowing directions of other smooth dendrites of the Purkinje cells were caused mainly by the diminution of stellate cells. Although parallel fibers were grossly decreased in number in the treated cerebellums, spines of the spiny dendrites of the Purkinje cells sprouted considerably in the 15-day-old mice, and then their morphological features remained even after 100 days of age.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0533
    Keywords: Key words Cytosine arabinoside ; Heterotopia ; Microcephaly ; Hippocampus ; Immunohistochemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Pregnant mice were injected intraperitoneally with cytosine arabinoside (Ara-C) on days 13.5 and 14.5 of pregnancy. The brains of their offspring were studied histologically and histochemically. In addition to dysgenic microcephaly, nodular structures consisting of cells with a relatively homogeneous morphology were observed in the depths of the cerebral cortex. The cell clusters were first seen around postnatal day 4, and had a cellular continuity with the disarrayed pyramidal cell layer in the CA1 region of the hippocampus. Golgi-Cox staining showed a number of pyramidal-shaped cells in the clusters. Morphologically, they resembled the pyramidal neurons of the hippocampus. Immunohistochemical examination, using anti-serotonin or anti-tyrosine hydroxylase antibodies, also indicated similarities between the cell clusters and the pyramidal cell layer. It is, therefore, proposed that the cell clusters consisted of heterotopic pyramidal cells of the hippocampus. A few synaptic structures could already be detected in the heterotopic cell clusters on postnatal day 3 by electron microscopy. This early establishment of synaptic contact with related neurons may have caused the heterotopic localization of the pyramidal cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1076
    Keywords: β-Galactosidase ; α-Neuraminidase ; Sialidosis ; Nephrosialidosis ; GM1-Gangliosidosis type 1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We observed a 3-month-old Japanese female infant with severe psychomotor retaration, coarse facial appearance, hepatosplenomegaly, and dysostosis multiplex. Only β-galactosidase was found to be deficient when the routine lysosomal hydrolase assay was performed on the patient's lymphocytes at 6 months of age. At first GM1-gangliosidosis type 1 seemed the most likely diagnosis. Later, however, additional studies (hydrolase assay in cultured skin fibroblasts, urinary oligosaccharide analysis, genetic complementation study, etc.) revealed that biochemical data of this case were in agreement with those of severe infantile sialidosis. The only important exception was that α-neuraminidase in the patient's lymphocytes showed normal activity but abnormal pH dependence toward 4-methylumbellyferyl substrate. In addition, a severely damaged kidney suggested that his case may be classified as a unique type of severe infantile sialidosis (possible nephrosialidosis). These observations stress the importance of careful biochemical diagnosis of a case with GM1-gangliosidosis type 1 phenotype.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...