Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim [u.a.] : Wiley-Blackwell
    Materials and Corrosion/Werkstoffe und Korrosion 31 (1980), S. 682-688 
    ISSN: 0947-5117
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Description / Table of Contents: Mechanismus des Transports von Schwefel durch vorher entstandene OxidzunderschichtenDie Möglichkeiten für den Transport von Schwefel durch vorher entstandene Oxidzunderschichten werden thermodynamisch untersucht, wobei die Grenzbedingungen ermittelt werden, unter denen die verschiedenen Mechanismen - Auflösung und Diffusion, Moleküldiffusion und Gasdiffusion - auftreten können. Die Ergebnisse werden für Nickel und Kobalt überprüft; daraus ergibt sich der Schluß, daß zwar grundsätzlich beide Mechanismen parallel vorliegen können, daß jedoch die Permeation von Gasmolekülen gefährlicher ist, da sie in einem breiteren Bereich von Gaszusammensetzungen wirksam werden kann. Außerdem wird deutlich gezeigt, daß durch die auf Kobalt aufwachsenden Oxidzunderschichten Schwefeldioxidmoleküle diffundieren können.
    Notes: The possibilities for transport of sulfur through preformed oxide scales by both solution-diffusion and molecular gas (24) permeation mechanisms are examined thermodynamically to establish the limiting conditions under which each is viable.The results are tested, using nickel and cobalt specimens, and it is concluded that, although both mechanisms may operate in parallel, the permeation of gas molecules is the more dangerous since it can operate over wider ranges of gas atmosphere composition. The permeation of SO2 molecules throu through oxide scales growing on cobalt is clearly demonstrated.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Zeitschrift für anorganische Chemie 349 (1967), S. 213-219 
    ISSN: 0044-2313
    Keywords: Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Description / Table of Contents: Für die Hydrazin-Komplexe von Mn(II), Co(II), Ni(II), Cu(II) und Zn(II) werden Zusammensetzung und Bildungskonstanten nach der Methode von Rossotti und Rossotti ermittelt, wobei experimentell pH-Titrationen in Lösungen durchgeführt wurden, die Metall-perchlorat, Hydrazin-diperchlorat und Natriumperchlorat (Ionenstärke μ = 1, t = 30°C) enthalten. In entsprechender Weise wurden die Bildungskonstanten für die Protonisierung von Hydrazin bestimmt. Selbst bei den höchsten Verhältnissen: Gesamt-Hydrazin/Gesamt-Metall (etwa 60) haben die höchsten Komplexe nur bei Co(II) und Zn(II) das Verhältnis:Metall/Hydrazin = 1 : 2, während in allen anderen Fällen in Lösung nur 1 : 1-Komplexe zu existieren scheinen.Die Werte der Bildungskonstanten (30°C, μ = 1) siehe „Summary“.Die nach Bjerrum berechneten β1-Werte sind mit den gefundenen in recht guter Übereinstimmung mit Ausnahme für Co(II). Die Grenzen für die Bjerrum-Methode werden diskutiert.
    Notes: The compositions and formation-constants of the complexes formed by Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with hydrazine have been evaluated graphically following the method of Rossotti and Rossotti using the necessary data from the results of pH titration of solutions containing the metal perchlorate, hydrazinium diperchlorate and sodium perchlorate at an ionic strength of unity at 30°C. The values of the successive equilibrium constants for the protonation of hydrazine, which were also needed, have been evaluated separately by similar procedure. Even at the rather high ratio of ca. 60 of (total hydrazine)/(total metal) the highest complexes which appear to be formed in the systems investigated have the ratio of metal:hydrazine of 1:2 for Co(II) and Zn(II), while in all the other cases only 1: 1 complexes appear to exist in solution.The values of the formation-constants (at 30°C; μ = 1) obtained are: \documentclass{article}\pagestyle{empty}\begin{document}$$\begin{array}{l} \log \beta _1 :{\rm Mn(II), 4}{\rm .76; Co(II), 1}{\rm .78; Ni(II),3}{\rm .18; Cu(II),6}{\rm .67;Zn(II), 3,69}{\rm.} \\ \log \beta _2 :{\rm Co(II), 3}{\rm .34; Zn(II), 6}{\rm .69}. \\ \end{array} $$\end{document}β1 values obtained from the Bjerrum relation are in fairly good agreement with those given above except for Co(II). The limitations of Bjerrum's method are discussed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Zeitschrift für anorganische Chemie 461 (1980), S. 222-230 
    ISSN: 0044-2313
    Keywords: Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Description / Table of Contents: Quantitative „Softness“ Parameter und ihre Anwendung in der Strukturaufklärung von Bimetalltetracyanat-Komplexen〉2M(NCS)2M′(SCN)2〈 und [Ml6][M′(SCN)4], (M = COII und NiII; M′ = ZnII, CdII und HgII, L = Anilin, p-Toluidin, Pyridin, Nicotinamid, 2,2′-Bipyridin und 4-Aminopyridin) wurden dargestellt und charackterisiert. Die Strukturen werden auf Grund von Leitfähigkeits-, magnetischen und spektroskopischen (IR und VIS) Messungen, sowie durch gruppentheoretische Berechnungen und Ligandenfeldparametern vorgeschlagen. Diese Strukturvorschläge werden gestützt durch quantitative „Softness“ - Werte „\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm E}_{\rm n}^{_ + ^ +},{\rm E}_{\rm m}^{_{\rm +}^{\rm +}} $\end{document}“. Die totale „Softness“ von M und M′ und ihre Differenz \documentclass{article}\pagestyle{empty}\begin{document}$ \Delta {\rm TE}_{\rm n}^{_ + ^ +} \left({{\rm M} - {\rm M}'} \right) $\end{document} wurden abgeleitet (Gleichungen siehe Abstract) und mit der Struktur der Komplexe in Verbindung gebracht.
    Notes: 〉2M(NCS)2M′(SCN)2〈 and [ML6][M′(SCN)4], (M = Co(II) and Ni(II), M′ = Zn(II), Cd(II) and Hg(II) and L = aniline(ani), p-toluidine(tol), pyridine(py), nicotinamide(nia), 2,2′-bipyridine(bipy) and 4-aminopyridine (apy)) have been prepared and characterized. Their structure have been proposed on the basis of molar conductance, magnetic moment, group theoretical calculations, ligand field parameters, infrared and electronic spectral studies. The proposed structures have also been supported by quantitative values of softness „\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm E}_{\rm n}^{_ + ^ +},{\rm E}_{\rm m}^{_{\rm +}^{\rm +}} $\end{document}“,. Total softness of M and M′ and their difference \documentclass{article}\pagestyle{empty}\begin{document}$ \Delta {\rm TE}_{\rm n}^{_ + ^ +} \left({{\rm M} - {\rm M}'} \right) $\end{document} have also been derived by the following equations and related to the structure of the complexes. \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm TE}_{\rm n}^{_ + ^ +} \left({\rm M} \right) = {\rm E}_{\rm n}^{_ + ^ +} \left({\rm M} \right) + \sum {\rm E}_{\rm m}^{_ + ^ +} \left({\rm L} \right) + \sum {\rm E}_{\rm m}^{_ + ^ +} \left({{\rm NCS}} \right) $$\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm TE}_{\rm n}^{_ + ^ +} \left({{\rm M}}^\prime \right) = {\rm E}_{\rm n}^{_ + ^ +} \left({{\rm M}}^\prime \right) + \sum {\rm E}_{\rm m}^{_ + ^ +} \left({\rm L} \right) + \sum {\rm E}_{\rm m}^{_ + ^ +} \left({{\rm SCN}} \right) $$\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$$ \Delta {\rm TE}_{\rm n}^{_ + ^ +} \left({{\rm M} - {\rm M}^\prime} \right) = \,|\,{\rm TE}_{\rm n}^{_ + ^ +} \left({\rm M} \right) - {\rm TE}_{\rm n}^{_ + ^ +} \left({{\rm M}}^\prime \right)$$\end{document}.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...