Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 40 (1994), S. 521-535 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The oxidative coupling of methane was carried out in the absence of catalyst in a continuous flow setup at total pressures up to 1,000 kPa, temperatures from 950 to 1,230 K, and inlet molar ratios of CH4/O2 down to 2.5. At constant temperature and residence time, the conversions of methane and oxygen increase drastically with increasing pressure. At oxygen conversions higher than 80%, product selectivities are comparable at different pressures. The space-time yield of the C2 products reaches a level comparable to that required for industrial operations from 400 kPa on. A radical-reaction network consisting of 38 elementary reactions allows to describe the experimental data. To describe adequately the effect of total pressure, the pressure fall-off behavior of the rate coefficients for the unimolecular reactions in the network has to be taken into account explicitly.General features of the reaction mechanism do not depend on the total pressure. Methyl and hydrogen peroxy radicals are the most abundant radicals. The total pressure increase results in a drastic increase of the concentrations of the chain carriers, particularly the hydrogen peroxy radical. Higher pressure favor the oxidative route from ethane to ethylene compared to the pyrolytic route. Increasing the total pressure leads to an increase of the primary and a decrease of the consecutive CO formation relative to the coupling. The balance between these nonselective routes determines the effect of the total pressure on the integral selectivity to C2 products at different conversions. The major contribution to the integral CO selectivity comes from the oxidation of methyl radicals.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 62 (1996), S. 491-500 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: We present in this article the use of infrared laser radiation to achieve localized curing in thermosensitive epoxy resin compounds. In stereolithography, the objective is to cure a localized region in a material by precisely confining the laser energy to the area that is to be cured. Industry already uses ultraviolet laser radiation at 352 nm to fabricate three-dimensional structures. Via infrared laser curing, we demonstrate the viability of a completely thermal localized curing process. In our experiment, we have focused the beam from a carbon dioxide (CO2) laser onto a sample composed of epoxy resin, diethylene triamine, and silica powder. Such resins typically cure, or solidify, when heated to moderately high temperatures, and our results show that we can confine the heating of the material, and, therefore, its curing in all three dimensions. We present a physical and a chemical model to describe the process and measure the curing rate as a function of temperature. In order to model the flow of heat in our sample as a result of infrared laser irradiation, we solved the time-dependent heat equation in cylindrical coordinates using the Crank-Nicholson finite-difference method. The results allow us to predict the curing behavior of the sample as a function of laser irradiation conditions, and we find good agreement with our preliminary experimental observations. © 1996 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...