Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Corticosteroids ; Membrane transport ; Diffusion of corticosteroids ; Renal transport of p-aminohippurate and corticosteroids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Using the stop-flow peritubular capillary microperfusion method contraluminal transport of corticosteroids was investigated (a) by determining the inhibitory potency (apparent K i values) of these compounds against p-aminohippurate (PAH), dicarboxylate (succinate) and sulphate transport and (b) by measuring the transport rate of radiolabelled corticosteroids and its inhibition by probenecid. Progesterone did not inhibit contraluminal PAH influx but its 17α- and 6β-hydroxy derivatives inhibited with an app. Ki of 0.36 mmol/l. Introduction of an OH group in position 21 of progesterone, to yield 11-deoxycorticosterone, augments the inhibitory potency considerably (app. K i, PAH of 0.07 mmol/l). Acetylation of the OH-group in position 21 of 11deoxycorticosterone, introduction of an additional hydroxy group in position 17 α to yield 11-deoxycortisol or in position 11 to yield corticosterone brings the app. K i, PAH back again into the range of 0.2–0.4 mmol/l. Acetylation of corticosterone or introduction of a third OH group to yield cortisol does not change the inhibitory potency, but, omission of the 21-OH group or addition of an OH group in the 6β position reduces or abolishes it. Cortisol and its derivatives prednisolone, dexamethasone and cortisone exert similar inhibitory potencies (app. K i, PAH 0.12–0.27 mmol/l). But again, omission of the 21-OH group in cortisone or addition of a 6β-OH group reduces or even abolishes the inhibitory potency against PAH transport. The interaction of corticosterone was not changed when 11β, 18-epoxy ring (aldosterone) was formed. On the other hand, the interaction was considerably augmented if the 11-hydroxy group was changed to an oxo group in 11-dehydrocorticosterone (app. K i, PAH 0.02 mmol/l). When the A ring of corticosterone is saturated and reduced to 3α, 11β-tetrahydrocorticosterone the inhibitory potency is not changed very much. But if more than four OH or oxo groups are on the pregnane skeleton or if the OH in position 21 is missing, the inhibitory potency decreases drastically (app. Ki, PAH 0.7–1.7 mmol/l). Introduction of a 21-ester sulphate into corticosterone, cortisol and cortisone does not change app. K i, PAH very much. Glucuronidation, however, reduces it (app. Ki, PAH ≈ 1.2 mmol/l). None of the tested corticosteroids interacts, in concentrations applicable, with dicarboxylate transport and only the sulphate esters interact with sulphate transport. Radiolabelled cortisol, d-aldosterone, 11-dehydrocorticosterone, and corticosterone are rapidly transported into proximal tubular cells. With the latter three compounds no sign of saturation and no transport inhibition with probenecid could be seen. Only with cortisol was a shift toward saturation observed. In addition, cortisol transport could be inhibited by probenecid. The data indicate that corticosteroids interact with the contraluminal renal PAH transporter, whereby hydroxylation in position 21 augments, and hydroxylation in the 6β or 3α, 17β position reduces interaction. However, as tested so far, simple diffusion seems to prevail when corticosteroids cross the cell membrane. Sulphation makes corticosteroids also a substrate for the sulphate transporter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Electron-attracting groups ; Electron-donating groups ; Hydrophobicity ; Corticosteroids ; Androstene analogues
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In order to test what chemical structure is required for a substrate to interact not only with the contraluminal organic anion (p-aminohippurate, PAH) transporter, but also with the organic cation (N 1-methylnicotinamide, NMeN, or tetraethylammonium, TEA) transporter, the stop-flow peritubular capillary perfusion method was applied and app. K i values were evaluated. Zwitterionic hydrophobic dipeptides not only interact with PAH but also with NMeN transport although with lower inhibitory potency (K i,PAH=0.2–1.4; K i,NMeN 614 mmol/l). Amongst the zwitterionic cephalosporins, which all inhibit PAH transport, the amino cephalosporin analogue cefadroxil was identified to interact also with NMeN transport (K i,PAH = 3.0, K i,NMeN=11.2 mmol/l). All Zwitterionic naphthyridine and oxochinoline gyrase inhibitors tested inhibit NMeN transport with app. K i,NMeN values between 1.2 mmol/l and 4.7 mmol/l; the naphthyridine analogues show a good inhibitory potency against PAH transport (K i,PAH ≈ 0.4 mmol/l), the piperazine-containing quinolone analogues have a moderate inhibitory potency (K i,PAH=1.1–2.5 mmol/l) and the piperazine-containing pipemidic acid did not inhibit PAH transport at all. Zwitterionic thiazolidine carboxylate phosphamides also interact with both transporters (app. K i,PAH ≈ 3.0; app. K i,NMeN ≈ 18.0 mmol/l). The nonionizable oxo- and hydroxy-group-containing corticosteroid hormones also interact with the two transporters. (a) An OH group in position 21 is necessary for interaction with the PAH transporter, but not for interaction with the TEA transporter. (b) Introduction of an OH group in position 17α abolishes interaction with the TEA transporter, but has different effects with the PAH transporter. (c) Introduction of an OH group in position 6 abolishes interaction with both, the PAH and the TEA transporter. (d) A change of the side-group in position 11 of corticosterone from -OH to -H to=O enhances interaction with the PAH transporter but has no effect on the interaction with the TEA transporter. Nonionizable 4- or 5-androstene analogues inhibit both transporters with app. K i between 0.16 mmol/l and 0.64 mmol/l, if the steroids are soluble in a concentration greater than 1 mmol/l. Nonionizable oxazaphosphorins with more than one chloroethyl group interact with the PAH transporter with app. K i between 0.84mmol/l and 4.9mmol/l and with the NMeN transporter with app. K i between 3.2 mmol/l and 18.7 mmol/l. Thus a substrate interacts with both transporters if it is sufficiently hydrophobic, possesses acidic and/or electron-attracting plus basic and/or electron-donating groups, or possesses several electron-attracting nonionizable groups (O, OH, Cl). A certain spatial arrangement of the interacting groups seems to be necessary.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...