Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-041X
    Keywords: Key words Brain development ; Axonal scaffold ; Extradenticle ; Homothorax ; Drosophila
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  During early brain development in Drosophila a highly stereotyped pattern of axonal scaffolds evolves by precise pioneering and selective fasciculation of neural fibers in the newly formed brain neuromeres. Using an axonal marker, Fasciclin II, we show that the activities of the extradenticle (exd) and homothorax (hth) genes are essential to this axonal patterning in the embryonic brain. Both genes are expressed in the developing brain neurons, including many of the tract founder cluster cells. Consistent with their expression profiles, mutations of exd and hth strongly perturb the primary axonal scaffolds. Furthermore, we show that mutations of exd and hth result in profound patterning defects of the developing brain at the molecular level including stimulation of the orthodenticle gene and suppression of the empty spiracles and cervical homeotic genes. In addition, expression of a Drosophila Pax6 gene, eyeless, is significantly suppressed in the mutants except for the most anterior region. These results reveal that, in addition to their homeotic regulatory functions in trunk development, exd and hth have important roles in patterning the developing brain through coordinately regulating various nuclear regulatory genes, and imply molecular commonalities between the developmental mechanisms of the brain and trunk segments, which were conventionally considered to be largely independent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 62 (1986), S. 281-292 
    ISSN: 1432-1106
    Keywords: PT cell ; Areas 4γ and 5 ; Intracortical microstimulation ; HRP ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. The cortico-cortical projection from area 5 to area 4 γ was studied in anesthetized cats. 2. Intracortical microstimulation of area 5 produced EPSPs in pyramidal tract (PT) cells in area 4 γ. Such EPSPs were analysed in a total of 54 fast PT cells. The rising phase of these EPSPs was often composed of fast and slow components. 3. Fast-rising EPSPs (fast component) were produced predominantly by stimulation within layer III of area 5 while slow-rising EPSPs (slow component) were evoked predominantly by stimulation within layer V of area 5. 4. The amplitudes of the fast and slow components of EPSPs produced during repetitive stimulation within layers III and V of area 5 decreased and increased, respectively, with an increase in the stimulus frequency without any appreciable changes in their latency and time-to-peak. The slow component was much less influenced by membrane hyperpolarization than the fast component. 5. Retrogradely labeled neurons were found not only in layer III but also in layer V of area 5 following HRP injection centered on superficial layers (I–III) of area 4γ. 6. It is suggested that there are two groups of cortico-cortical neurons in layers III and V of area 5, which may make monosynaptic contact with the proximal and distal sites of fast PT cells in area 4γ, respectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...