Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 436 (1998), S. 329-337 
    ISSN: 1432-2013
    Keywords: Key words Amiloride ; Fertilization ; Maitotoxin ; Nonselective cation channel ; Xenopus oocytes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Maitotoxin (MTX) may exert its toxic effect by activating ion conductances and has been shown to elicit a fertilization-like response in Xenopus laevis oocytes. In the present study we investigated the electrophysiological response of stage V–VI Xenopus oocytes to MTX using the two-microelectrode voltage-clamp technique. Membrane voltage (V m) measurements demonstrated that MTX (50 pM to 1 nM) depolarized the oocytes from –49±7 to –14±1 mV. Subsequent replacement of bath Na+ by the impermeant cation NMDG (N-methyl-d-glucamine) shifted V m from –14±1 to –53±5 mV (n=29). This indicates that MTX activates a cation conductance. Indeed, current measurements at a holding potential of –60 or –100 mV showed that within 10 s of MTX application an inward current component developed which was largely abolished by extracellular Na+ removal. After a 1-min application of 1 nM MTX the NMDG-sensitive current increased more than 100-fold from 0.14±0.03 μA to a peak value of 21±3 μA (n=11). The effect of MTX was concentration dependent with an EC50 of about 250 pM but only slowly reversible. Ion substitution experiments indicated that the stimulated conductance was nonselective for monovalent cations with a slight preference for NH4 + (2.1) 〉 K+ (1.5) 〉 Na+ (1.0) 〉 Li+ (0.7). Regarding divalent cations, a complex biphasic response to extracellular Na+ replacement by Ca2+ was observed, which suggests that the stimulated channels may have a small Ca2+ permeability but that exposure to high extracellular Ca2+ enhances recovery from MTX stimulation. No significant conductance for Mn2+ was observed. Application of 1 mM benzamil, 1 mM amiloride, or 100 μM 1-(β-[3-(4-Methoxyphenyl)-propoxy]-4-methoxyphenethyl)-1H-imidazole hydrochloride (SK&F 96365) reduced the MTX-stimulated inward current by 81%, 62%, or 65%, respectively. Gd3+ had an inhibitory effect of 29% and 38% at concentrations of 10 μM or 100 μM, respectively. Flufenamic acid, niflumic acid, (RS)-(3,4-dihydro-6,7-dimethoxyisoquinoline-1-γ1)-2-phenyl-N,N-di-[2-(2,3,4-trimethoxyphenyl)-ethyl]-acetamide (LOE908), and 3′,5′-dichlorodiphenylamine-2-carboxylic acid (DCDPC), known blockers of other nonselective cation channels, had no significant effect. We conclude that MTX activates a nonselective cation conductance in Xenopus oocytes. The underlying channels may be involved in changes in V m that occur during the early stages of fertilization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1424
    Keywords: Cortical collecting duct ; Flufenamic acid ; Amiloride ; Adenine nucleotides ; cGMP dependent protein kinase ; Patch clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract We recently reported that M-1 mouse cortical collecting duct cells show nonselective cation (NSC) channel activity (Proc. Natl. Acad. Sci. USA 89:10262–10266, 1992). In this study, we further characterize the M-1 NSC channel using single-channel current recordings in excised inside-out patches. The M-1 NSC channel does not discriminate between Na+, K+, Rb+, Cs+, and Li+. It has a linear I-V relation with a conductance of 22.7±0.5 pS (n=78) at room temperature. The Pcation/ Panion ratio is about 60 and there is no measurable conductance for NMDG, Ca2+, Ba2+, and Mn2+. Cytoplasmic calcium activates the M-1 NSC channel at a threshold of 10−6 m and depolarization increases channel activity (NP o ). Cytoplasmic application of adenine nucleotides inhibits the M-1 NSC channel. At doses of 10−4 m and 10−3 m, ATP reduces NP o by 23% and 69%, respectively. Furthermore, since ADP (10−3 m) reduces NP o by 93%, the inhibitory effect of adenine nucleotides is not dependent on the presence of a γ-phosphoryl group and therefore does not involve protein phosphorylation. The channel is not significantly affected by 8-Br-cGMP (10−4 m) or by cGMP-dependent protein kinase (10−7 m) in the presence of 8-Br-cGMP (10−5 m) and ATP (10−4 m). The NSC channel is not sensitive to amiloride (10−4 m cytoplasmic and/or extracellular) but flufenamic acid (10−4 m) produces a voltage-dependent block, reducing NP o by 35% at depolarizing voltages and by 80% at hyperpolarizing voltages. We conclude that the NSC channel of M-1 mouse cortical collecting duct cells belongs to an emerging family of calcium-activated and nucleotide-sensitive nonselective cation channels. It does not contribute to amiloride-sensitive sodium absorption and is unlikely to be a major route for calcium entry. The channel is normally quiescent but may be activated under special physiological conditions, e.g., during volume regulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...