Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Haemocytes ; Glia ; Central nervous system ; Repair ; Insect ; Periplaneta americana
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Injection of physiologically inert particles (fluorescent microspheres) has a profound effect on neural repair of central nervous connectives of the cockroach Periplaneta americana following selective glial disruption. The injected particles, which do not gain direct access to the central nervous tissues, are taken up by a relatively small proportion (〈 10%) of the haemocytes. This interference with haemocyte function virtually abolishes the appearance of the granule-containing cells (which are prominently involved in normal glial repair) and produces abnormal reorganization of the superficial glial elements. These results are interpreted as evidence that the granule-containing cells are derived from haemocytes which are critically involved in glial repair.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Glia ; Haemocyte ; Central nervous system ; Bleomycin ; Neural repair ; Insect, Periplaneta americana
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The DNA-binding drug, bleomycin, has a profound effect on neural repair following selective glial disruption by ethidium bromide. The contribution of the granule-containing cells (which normally appear in the early stages of repair) is greatly reduced, the restoration of the blood-brain barrier is delayed and the ultrastructural organization of the reorganising perineurium is dramatically changed. The aberrant perineurial structure and function observed in the presence of bleomycin are postulated to result from the effects of the drug on haemocytes which, together with endogenous reactive cells, contribute to the normal process of glial repair.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 247 (1987), S. 129-135 
    ISSN: 1432-0878
    Keywords: Neural repair ; Glia ; Haemocytes ; Cell division ; Insect, Periplaneta americana
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Autoradiographs of tritiated thymidine uptake and subsequent light- and electron-microscopical examination revealed an onset of perineurial glial cell proliferation 3 days after injury to the CNS. The number of cells labelled increased rapidly until 7 days post-lesioning. At 2 weeks, the labelled cells equalled the number of nuclei present in the perineurium. No label was seen in the subperineurial cells, possibly because of the inability of the label to penetrate into a region where localised division is taking place. Prior to the onset of thymidine uptake, the damaged nerve cord was invaded by an exogenous reactive cell. The number of these cells increased rapidly in the first 48 h, then decreased as a negative exponential, very few remaining after 7 days. We suggest that this cell type must either return to the haemocoel or transform into a functional glial cell class. The repair of the insect central nervous system can be divided into three phases which show striking similarities to vertebrate repair sequences. These include: initial invasion of the lesion by exogenous cells, subsequent proliferation of glial cells, the longer term flux of cell numbers, their distribution and the time scale of events. This suggests that the insect CNS might provide a system for examining common cellular mechanisms and events.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 251 (1988), S. 339-343 
    ISSN: 1432-0878
    Keywords: Glia ; Neural repair ; CNS ; Insect, Periplaneta americana
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Selective disruption of the neuroglia in penultimate abdominal connectives of the cockroach nerve is followed by a rapid accumulation of cells in the perineurial layer of the lesion. Subsequently, there is an abrupt, secondary, rise in cell numbers in the undamaged perineurial tissues, anterior to the lesion and adjacent to the 4th abdominal ganglia. By 7 days the increased cell numbers are again effectively confined to the original lesion zone. The initial rise in cell numbers is postulated to result from an invasion by blood-borne haemocytes and the subsequent increase, in undamaged perineurial tissues, from the mobilization of endogenous reactive cells. Recruitment of the endogenous cells is inhibited if the haemocytes are excluded from the lesion. There is a slower mobilization of sub-perineurial cells, which, again, is inhibited following exclusion of haemocytes from the lesion zone. It is postulated that the recruitment of the endogenous reactive cells is initiated by the invading haemocytes which transform to granule-containing cells and release diffusible morphogenic and/or mitogenic factors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 267 (1992), S. 535-543 
    ISSN: 1432-0878
    Keywords: Blood-brain barrier ; Neural regeneration ; BUdR ; Glia ; Cell proliferation ; Periplaneta americana (Insecta)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary This study uses a recently developed technique for preserving the ultrastructure of cells in the insect CNS during immunohistochemical processing for 5-bromo-2-deoxyuridine incorporation into newly synthesised DNA. The results allow us to identify the proliferating cell calsses in the regenerating blood-brain barrier. High resistance barrier cells do not label with the antibody but sheath cells clearly do. Intermediate cell types appearing during repair are identified. It is hypothesised that these cells generate matrix molecules for neural lamella repair and may represent transitional forms as invasive blood cells transdifferentiate into functional sheath cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 247 (1987), S. 111-120 
    ISSN: 1432-0878
    Keywords: Glia ; Neural repair ; CNS ; Organ culture ; Insect, Periplaneta americana
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Insect glial cells are capable of division and repair in organ culture after selective damage with the toxin ethidium bromide. The repair is slower and less organised than seen in vivo after similar treatment and is still incomplete after one month. Granule-containing cells, which play an important role in the early stages of repair in vivo, are never seen in cultured connectives. This observation adds further support to the hypothesis that these cells are derived from haemocytes and that their presence is necessary for rapid and orderly repair. The uptake of 3H-thymidine into perineurial glial cells in vitro, both in control and ethidiumtreated connectives, shows that there is a considerable proliferation of cells in this region. Some uptake of thymidine is also seen in subperineurial glia but division alone cannot account for the large increase in the number of glial nuclei found at the early stages of repair in this region. Further, glial cells with diverse morphologies suggest that subpopulations are present. We conclude that cell migration from undamaged areas, as well as cell proliferation, is necessary for CNS repair in vitro.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 247 (1987), S. 121-128 
    ISSN: 1432-0878
    Keywords: Neural repair ; Glia ; Cell deployment ; Haemocytes ; Scanning electron microscopy (SEM) ; Insect (Periplaneta americana)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary In Periplaneta americana, SEM of abdominal nervous connectives revealed a rapid accumulation of haemocytes on the surface of the neural lamella within 24 h of selective disruption of the underlying neuroglia by ethidium bromide. After 4 days the neural lamella was effectively clear of adhering haemocytes, but showed characteristic “blisters”, which, it is postulated, represented the points of entry of the cells from the haemocoel into the underlying tissues. A notable subsequent feature was a substantial increase in the number of cells within repairing connectives. Initially, there was a marked asymmetry in their distribution, with significantly higher numbers of cells anterior to, and within, the lesion area. It seems likely that this polarity resulted from differential cell division within the connectives. The initial asymmetry disappeared after seven days. However, increased perineurial cell numbers were maintained in the lesion area after one month and were still apparent two months after selective glial disruption. There was no equivalent increase in cell numbers in the lesion zone of cultured cords or, in vivo, after injection of the DNA-scission drug, bleomycin, treatments which preclude haemocyte involvement. It is suggested that in the absence of haemocytes and with suppression of proliferation by endogenous cells, repair is achieved by redeployment or growth of adjacent, undamaged glia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...