Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0948-5023
    Keywords: Keywords Vermiculite ; Intercalate ; Aniline ; Tetramethylammonium ; Molecular mechanics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Molecular mechanics simulations in Cerius2 have been used for modelling vermiculite intercalated with tetramethylammonium and aniline cations. The published structure data obtained for these intercalated structures from X-ray single crystal diffraction have been used to test the force fields and modelling strategy for organo-clays. The strategy of modelling was based on the nonbond host-guest interactions and on rigid silicate layers and rigid guest species. The rigidity of silicate layers requires that the cell parameters a, b andγare kept fixed during the energy minimisation. The energy term was set up using the nonbond interaction terms only and the Crystal Packer module in Cerius2 has been used for the energy minimisation. In Crystal Packer the rigid units, i.e. the silicate layers and guest species can be translated and rotated during energy minimisation and the cell parameters c, α, and β have been varied. Three sets of Van derWaals (VDW) parameters available in Crystal Packer: Tripos, Universal and Dreiding have been used in present molecular simulations. Ab initio MP2 calculations were performed to justify the application of the force field. The best agreement of molecular mechanics simulations with both: experimental and ab initio data was obtained with the Tripos VDW parameters for both intercalates. The results of modelling are in good agreement with the experimental data as to the cell parameters and the interlayer packing. The cell parameters reported by Vahedi-Faridi and Guggenheim (1997) for tetramethylammonium-vermiculite are: c = 13.616 Å, α = 90°, β = 97.68° ; from the present modelling we obtained: c = 13.609 Å, α = 90.19°, β = 97.56°. Tetramethylammonium-cations are arranged in one layer in the interlayer space. One C-C edge of NC4 tetrahedra is perpendicular to the silicate layers. The deep immersion of the methyl groups into the ditrigonal cavities suggested by Vahedi-Faridi and Guggenheim was not confirmed by modelling. Slade and Stone (1984) presented the measured cell parameters for aniline vermiculite: c = 14.89 Å, α = 90°, β = 97°; present result is: c = 14.81 Å, α = 90.72°, β = 96.70° for partially exchanged vermiculite and c = 14.84 Å, α = 90.53°, β = 97.17° for fully exchanged vermiculite. The aniline cations are positioned over the ditrigonal cavities alternating in their anchoring to lower and upper silicate layer. The C-N bonds are perpendicular to layers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0948-5023
    Keywords: Keywords: Molecular mechanics ; Intercalated clays ; Keggin cation.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Molecular mechanics simulation using Cerius2 modeling environment have been used to investigate the structure of montmorillonite, intercalated with Keggin-like cation7+. Present work is focused to the strategy of modelling in case of intercalated layered structures and to investigation of structure parameters characterizing the interlayer porosity, that means: the interlayer distance, the position, orientation and distribution of Keggin cations in the interlayer space and the stacking of layers. Molecular simulations revealed the structure of the interlayer and led to the following conclusions: In the most stable configuration the 3-fold axis of Keggin cation is perpendicular to the silicate layer. This orientation of Keggin cations leads to the basal spacing 19.51 (10-10 m). Energy minimization during the translation of Keggin cation along the silicate layer gives only small fluctuations of basal spacing and no correlation has been found between the shift of cation along the layers and the value of basal spacing. No systematic relationship has been found between the shift of cation and crystal energy and no systematic relationship exists between the mutual shift of two successive layers and the values of basal spacing and crystal energy. Consequently, no two-dimensional ordering of Keggin cations in the interlayer and no regular stacking of layers can be expected. X-ray diffraction diagrams obtained for montmorillonites, intercalated with Keggin cation, confirm present conclusions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular modeling 4 (1998), S. 176-182 
    ISSN: 0948-5023
    Keywords: Intercalation ; Montmorillonite ; Tetramethylammonium ; Trimethylphenylammonium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The intercalation of organoammonium cations into smectite structure is the important step in the technology of non-linear optical materials. In this study we investigated the structure of montmorillonite (MMT), intercalated with two organoammonium cations : tetramethylammonium (TMA) and trimethylphenylammonium (TMPA) using molecular mechanics simulations. The studies were focused to following aspects: arrangement of organoammonium cations in the interlayer, their positions and orientation with respect to silicate layers and their anchoring to the layers. The calculated (basal) d-spacings for MMT with TMA 14.29 Å and 15.36 Å for MMT with TMPA are in good agreement with X-ray diffraction data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...