Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1459
    Keywords: Mitochondria ; Muscle ; NADH-CoQ reductase ; 31P nuclear magnetic resonance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary A 34-year-old man affected by exercise intolerance, mild proximal weakness and severe lactic acidosis is described. Muscle biopsy revealed mitochondrial abnormalities and an increase of cytochrome c oxidase histochemical reaction. Biochemical investigations on isolated muscle mitochondria as well as polarographic studies revealed a mitochondrial NADH-CoQ reductase (complex I) deficiency. Mitochondrial dysfunction was confirmed by 31P nuclear magnetic resonance spectroscopy. Immunological investigation showed a generalized reduction of all complex I polypeptides. Genetic analysis did not reveal mitochondrial DNA deletions. The biochemical defect was not present in the patient's muscle tissue culture. Metabolic measurements and functional evaluation showed a reduced mechanical efficiency during exercise.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 29 (1997), S. 175-183 
    ISSN: 1573-6881
    Keywords: Mitochondria ; MPTP ; Parkinson's disease ; Huntington's disease ; Alzheimer's disease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Numerous toxins are known to interfere with mitochondrial respiratory chain function. Use has been made of these in the development of pesticides and herbicides, and accidental use in man has led to the development of animal models for human disease. The propensity for mitochondrial toxins to induce neuronal cell death may well reflect not only their metabolic pathways but also the sensitivity of neurons to inhibition of oxidative phosphorylation. Thus, the accidental exposure of humans to l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine and to 3-nitropropionic acid has led to primate models of Parkinson's disease and Huntington's disease, respectively. These models were made all the more remarkable when identical biochemical deficiencies were identified in relevant areas of humans suffering from the respective idiopathic diseases. The place of complex I deficiency in Parkinson's disease remains undetermined, but there is recent evidence to suggest that, in some cases at least, it may play a primary role. The complex II/III deficiency in Huntington's disease is likely to be secondary and induced by other pathogenetic factors. The potential to intervene in the cascade of reactions involving mitochondrial dysfunction and cell death offers prospects for the development of new treatment strategies either for neuroprotection in prophylaxis or rescue.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...