Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 273-281 
    ISSN: 1432-0789
    Keywords: Key words Wheat ; (Triticum aestivum) ; Rhizosphere ; Soil microflora ; Gram-negative bacteria ; API 20NE ; Flavobacterium spp. ; Cytophaga
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We identified 161 Gram-negative bacterial strains isolated from the root surface of wheat grown under different soil conditions. The strains were divided into seven groups based on major morphological and physiological properties. Taxonomic allocation of the groups was verified by guanine+cytosine contents of DNA. Except for one group, which may be assumed to include bacteria belonging to the genera Flavobacterium and Cytophaga, the various groups were taxonomically united. The distribution of the groups changed with soil improvement. Pseudomonads predominated in unimproved soil, but Flavobacterium and Cytophaga spp. were predominant in the most improved soil. As all the strains were non-fermentative by Hugh and Leifson‘s test, API 20NE identification was applied. However, many strains were misidentified by this system, especially in the Flavobacterium and Cytophaga spp. group. For ecological studies, the strains were classified to species level by the API 20 NE system and by the results of a combination of guanine+cytosine (mol%) and isoprenoid quinone data. The pattern of distribution of the bacteria on the root surface of wheat varied at species level within one genus depending on soil conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 101 (2000), S. 1001-1007 
    ISSN: 1432-2242
    Keywords: Key words Chromosome identification ; Physical mapping ; FISH ; BAC ; Molecular cytogenetics ; Potato
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Reliable and easy to use techniques for chromosome identification are critical for many aspects of cytogenetic research. Unfortunately, such techniques are not available in many plant species, especially those with a large number of small chromosomes. Here we demonstrate that fluorescence in situ hybridization (FISH) signals derived from bacterial artificial chromosomes (BACs) can be used as chromosome-specific cytogenetic DNA markers for chromosome identification in potato. We screened a potato BAC library using genetically mapped restriction fragment length polymorphism markers as probes. The identified BAC clones were then labeled as probes for FISH analysis. A set of 12 chromosome-specific BAC clones were isolated and the FISH signals derived from these BAC clones serve as convenient and reliable cytological markers for potato chromosome identification. We mapped the 5S rRNA genes, the 45S rRNA genes, and a potato late blight resistance gene to three specific potato chromosomes using the chromosome-specific BAC clones.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Wheat ; Agropyron elongatum derivatives ; WSMV resistance ; Molecular cytogenetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Three lines derived from wheat (6x) x Agropyron elongatum (10x) that are resistant to wheat streak mosaic virus (WSMV) were analyzed by chromosome pairing, banding, and in situ hybridization. Line CI15321 was identified as a disomic substitution line where wheat chromosome 1D is replaced by Ag. elongatum chromosome 1Ae-1. Line 87-94-1 is a wheat-Ag. elongatum ditelosomic addition 1Ae-1L. Line CI15322 contains an Ag. elongatum chromosome, 1Ae-2, that substitutes for chromosome 1D. The short arm of 1Ae-2 paired with the short arm of 1Ae-1 at metaphase I (MI) in 82% of the pollen mother cells (PMCs). However, the long arms of these two chromosomes did not pair with each other. In CI15322, the long arm of chromosome 4D has an Agropyron chromosome segment which was derived from the distal part of 1Ae-1L. This translocation chromosome is designated as T4DS·4DL-1L. T4DS·4DL-1Ae-1L has a 0.73 μm distal part of the long arm of 4D replaced by a 1.31 μm distal segment from 1Ae-1L. The major WSMV resistance gene(s) in these lines is located on the distal part of 1Ae-1L.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2242
    Keywords: Key words Sorghum bicolor ; Repetitive DNA sequences ; Centromeres ; Molecular cytogenetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  A 823-bp Sau3AI fragment (pSau3A10) was subcloned from a sorghum bacterial artificial chromosome (BAC) clone, 13I16, that contains DNA sequences specific to the centromeres of grass species. Sequence analysis showed that pSau3A10 consists of six copies of an approximately 137-bp monomer. The six monomers were organized into three dimers. The monomers within the dimers shared 62–72% homology and the dimers were 79–82% homologous with each other. Fluorescence in situ hybridization (FISH) analysis indicated that the Sau3A10 family is present only in the centromeres of sorghum chromosomes. Sequencing, Southern hybridization, and Fiber-FISH analyses indicated that the Sau3A10 family is tandemly arranged and is present in uninterrupted stretches of up to at least 81 kb of DNA. Slot-blot analysis estimated that the Sau3A10 family constitutes 1.6–1.9% of the sorghum genome. The long stretches of Sau3A10 sequences were interrupted by other centromeric DNA elements. Southern analysis indicated that the Sau3A10 sequence is one of the most abundant DNA families located in sorghum centromeres and is conserved only in closely related sorghum species. Methylation experiments indicated that the cytosine of the CG sites in sorghum centromeric regions is generally methylated. The structure and organization of the Sau3A10 family shared similarities with centromeric DNA repeats in other eukaryotic species. It is suggested that the Sau3A10 family is probably an important part of sorghum centromeres.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...