Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Neuropeptides Mytilus inhibitory peptides (MIP) Immunocytochemistry Central and peripheral nervous system Invertebrates Lymnaea stagnalis, Helix pomatia (Gastropoda, Mollusca)  (1)
  • Single sodium channel  (1)
Material
Years
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 399 (1983), S. 302-308 
    ISSN: 1432-2013
    Keywords: Neuroblastoma cell ; Patch clamp ; Single sodium channel ; Multiple open states
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Single sodium channel currents were studied in mouse neuroblastoma cells. Channel conductance (γ) was 11.6±3.4 pS at 6–8°C. Unitary current amplitudes and channel activity increased with increasing temperature. The Arrhenius plot of the conductance was linear between 5 and 35°C with an activation enthalpy of 27.1 kJ/mole (Q 10 =1.28). Amplitude distributions were fitted by the sum of two Gaussian functions indicating the presence of two different single channel amplitudes: smalleri 1 and largeri 2. The relative probability of appearance ofi 1, which has a shorter mean open time, was higher during the early phase of depolarization (t〈16 ms). The open time histograms, inactivating phase of macroscopic currents and delay time histograms were fitted by the sum of two exponentials. The distinct kinetic and steady-state parameters reflect two open states of sodium channels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Neuropeptides Mytilus inhibitory peptides (MIP) Immunocytochemistry Central and peripheral nervous system Invertebrates Lymnaea stagnalis, Helix pomatia (Gastropoda, Mollusca)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. The distribution and neuroanatomy of Mytilus inhibitory peptides (MIP)-containing neurons in the central nervous system and their innervation pattern in the peripheral nervous system of the pulmonate snail species, Lymnaea stagnalis and Helix pomatia, have been investigated immunocytochemically, by applying an antibody raised to GSPMFVamide. A significant number of immunoreactive neurons occurs in the central nervous system of both species (Lymnaea: ca 600–700, Helix: ca 400–500), but their distribution is different. In Lymnaea, labeled neurons are found in all central ganglia where a number of large and giant neurons, previously identified physiologically, reveal MIP immunoreactivity. In Helix, most of the immunolabeled neurons are small (12–30 µm) and concentrated in the buccal and cerebral ganglia; the parietal ganglia are free of labeled cells. In both species, the ganglionic neuropils, peripheral nerves, connectives, and commissures are richly supplied with immunolabeled fibers. The MIP-immunoreactive innervation pattern in the heart, intestine, buccal mass and radula, and foot is similar in both species, with labeled axonal bundles and terminal-like arborizations (buccal mass, foot) or a network of varicose fibers (heart, intestine). Intrinsic neurons are not present in these tissues. The application of GSPYFVamide inhibits the spontaneous contractions of the esophageal longitudinal musculature in Helix, indicating the bioactivity of the peptide. An outside-out patch-clamp technique has demonstrated that GSPYFVamide opens the K+ channels in central nerve cells of Helix. Injection of GSPYFVamide into the body cavity inhibits the feeding of starved Helix. A wide modulatory role of MIP at central and peripheral levels is suggested in Lymnaea and Helix, including the participation in intercellular signalling processes and remote neurohormonal-like control effects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...