Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 277-287 
    ISSN: 0006-3592
    Keywords: phosphorus removal ; biological ; kinetics ; metabolic model ; polyphosphate ; PHB ; glycogen ; batch reactor, sequenced ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A structured metabolic model is developed that describes the stoichiometry and kinetics of the biological P removal process. In this approach all relevant metabolic reactions underlying the metabolism, considering also components like adenosine triphosphate (ATP) and nic-otinamide-adenine dinucleotide (NADH2) are describedbased on biochemical pathways. As a consequence of the relations between the stoichiometry of the metabolic reactions and the reaction rates of components, the required number of kinetic relations to describe the process is reduced. The model describes the dynamics of the storage compounds which are considered separately from the active biomass. The model was validated in experiments at a constant sludge retention time of 8 days, over the anaerobic and aerobic phases in which the external oncentrations as well as the internal fractions of the relevant components involved in the P-removal process were monitored. These measurements include dissolved acetate, phosphate, and ammonium; oxygen consumption; poly-β-hydroxybutyrate (PHB); glycogen; and active biomass. The model satisfactorily describes the dynamic behavior of all components during the anaerobicand aerobic phases.© 1995 John Wiley & Sons, Inc
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0006-3592
    Keywords: PHB ; poly(β-hydroxybutyrate) ; Paracoccus pantotrophus ; dynamic growth ; metabolic modeling ; polymers ; activated sludge process ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The objective of the research was to obtain insights into the behavior of microorganisms under feast/famine conditions as often occur in wastewater treatment processes. The response of microorganisms to such conditions is the accumulation of storage polymers like poly(β-hydroxybutyrate). The research was performed using a pure culture of Paracoccus pantotrophus LMD 94.21. A steady-state C-limited chemostat culture was switched to batch mode and a pulse of acetate was added. As long as external substrate (acetic acid) was present, the organism grew and accumulated poly(β-hydroxybutyrate). After depletion of the external substrate, the stored poly(β-hydroxybutyrate) was used as growth substrate. Poly(β-hydroxybutyrate) accumulation was found to be strongly dependent on the growth rate of the organism before the pulse addition of acetate. Poly(β-hydroxybutyrate) accumulation was correlated to the difference in maximum acetate uptake rate and the acetate required for growth. Based on the interpretation of the experimental results, a metabolically structured model has been set up. This model adequately describes the observed kinetics of the poly(β-hydroxybutyrate) formation and consumption. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 773-782, 1997.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...