Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0138-4988
    Keywords: Life Sciences ; Life Sciences (general)
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: One of the most striking features of alkane-grown yeast cells is conspicuous appearance of peroxisomes in harmony with a high level of catalase. This unique phenomenon was first demonstrated in the authors′ laboratory, and the metabolic functions of peroxisomes in yeasts utilizing alkanes has been estabilished with intact peroxisomes isolated by density gradient centrifugation. The organelles participate in the degradation of fatty acids derived from alkanes to C2-units and the synthesis of gluconeogenic intermediates from C2-units. The abundant appearance of peroxisomes in alkane-utilizing cells has allowed successful production of several useful enzymes including catalase, D-amino acid oxidase, uricase, acyl-CoA oxidase etc. Yeast cells will be an excellent system for investigation the functions and development of peroxisomes because biogenesis of the organelles is induced only by transferring the cells into alkane medium from glucose or ethanol medium.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Berlin : Wiley-Blackwell
    Acta Biotechnologica 1 (1981), S. 339-350 
    ISSN: 0138-4988
    Keywords: Life Sciences ; Life Sciences (general)
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Microbial cells were gel-entrapped with photo-crosslinkable resin prepolymers or urethane prepolymers, respectively. The resulting gels have different tailor-made hydrophobic or hydrophilic character. They were used for successful bioconversion of hydrophobic steroids and terpenoids in watersaturated mixtures of organic solvents. The experiments show the influence of the hydrophobicity of the gels and the polarity of the solvent mixtures, respectively. Use of hydrophobic gels and less polar solvents is preferable for bioconversion of hydrophobic compounds. The selective formation of a desired product among diverse products from a single substrate by appropriate use of hydrophobic or hydrophilic gels is possible. In each case, tests should be made to select the appropriate gel and solvent mixture. Bioconversions tested are: dehydroepiandrosterone to 4-androstene-3,17-dione; cholesterol to cholestenone; β-sitosterol to β-sitostenone; stigmasterol to stigmastenone; pregnenolone to progesterone; testosterone to Δ1-dehydrotestosterone or 4-androstene-3,17-dione, respectively; all with immobilized cells of Nocardia rhodocrous; and stereoselective hydrolysis of dl-menthyl-succinate to yield l-menthol with immobilized cells of Rhodotorula minuta var. texensis.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 11 (1973), S. 1891-1939 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Dynamic x-ray diffraction and dynamic birefringence techniques are employed to determine the nature of the molecular motions associated with the α mechanical loss processes for low-density polyethylene. The results indicate that the low-temperature part of this loss (designated α1) is associated with an interlammellar “grain boundary” slip process while the higher temperature process (α2) involves intracrystalline motion and plasticity of the crystal itself. The activation energy for α1 determined by x-ray response is 25-30 kcal/mole, while that for α2 is 30-60 kcal/mole. The findings are consistent with dynamic infrared and dynamic light-scattering results which indicate that the motion of amorphous chains is closely correlated with that of the crystals. The relative contributions of amorphous and crystalline regions to the birefringence are dependent on the thermal treatment of the sample. The effect of static strain on the dynamic response indicates that crystal orientability is first increased with strain, probably because of splaying apart of lamellae, is subsequently decreased because of the restrictions of interlamellae tie chains, but then increases again as the spherulites are destroyed at high strain. The static strain reduces the orientability of amorphous regions.
    Additional Material: 29 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-1: Polymer Chemistry 5 (1967), S. 1937-1949 
    ISSN: 0449-296X
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The copolymerization of tetraoxane with styrene catalyzed by BF3·O(C2H5)2 was studied at 30°C. to determine whether a cyclic monomer can copolymerize with a vinyl monomer. The formation of the copolymer was confirmed by elementary analysis of both benzene-soluble and benzene-insoluble fractions of the polymer obtained. It was found by gas chromatography that a fairly large amount of 4-phenyl-1,3-dioxane and a small amount of trioxane were formed in the present system, in addition to polymers. Roughly a third of the total amount of the monomers reacted was consumed in the formation of methanol-insoluble polymer, a third for 4-phenyl-1,3-dioxane, and another third for trioxane and unknown products which could not be indentified. The formation of these cyclic compounds during the copolymerization may be explained in terms of a back-biting (or intramolecular transacetalization) reaction. The cationic reactivity of tetraoxane was found to be similar to that of styrene on the basis of both the consumption rate of each monomer in the copolymerizing system and the composition of the methanol-insoluble polymer obtained.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-1: Polymer Chemistry 5 (1967), S. 1927-1936 
    ISSN: 0449-296X
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: It was determined whether trioxane, a cyclic formal, can copolymerize with styrene, a vinyl monomer, in the presence of BF3·O(C2H5)2 catalyst at 30°C. The methanol-in-soluble fraction after extraction with benzene was found to contain the copolymer of styrene and trioxane, thus demonstrating that trioxane can copolymerize with styrene In this case the amount of the methanol-insoluble polymer was less than that of the total monomer consumed, as determined by gas chromatography. This was found to be caused partly by the formation of the cyclic oligomer, 4-phenyl-1,3-dioxane. The relative reactivity of styrene was qualitatively found to be larger than that of trioxane, not only from the rate of monomer consumption but also from the composition of the methanol-insoluble polymer obtained. In a nonpolar solvent the reactivity of trioxane increased, and the difference in reactivity between the two monomers decreased. Indeed, an apparent monomer reactivity ratio might be obtained from the relationship between the monomer composition and the monomer consumption rate or the composition of the methanol-insoluble polymer, but it did not have a quantitative meaning because of the complexity of the copolymerization reaction.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...