Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2355-2369 
    ISSN: 0887-6266
    Keywords: fracture ; fatigue ; polyethylene ; molecular weight distribution ; short chain branch content ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Stepwise fatigue crack propagation in a range of polyethylene resins, some of which are candidates for use in pipes for natural gas distribution, was studied. Examination of the effect of molding conditions on fatigue crack propagation in a pipe resin indicated that fast cooling under pressure produced specimens with the same crack resistance as specimens taken from a pipe extruded from this resin. The mechanism of stepwise crack propagation in fatigue was the same as reported previously for creep loading. Observations of the region ahead of the arrested crack revealed a complex damage zone that consisted of a thick membrane at the crack tip followed by a main craze with subsidiary shear crazes that emerged from the crack tip at an angle to the main craze. The effects of molecular parameters, such as molecular weight, comonomer content, and branch distribution, on the kinetics of fatigue crack propagation were examined. Correlation of creep and fatigue crack resistance made it possible to relate fatigue fracture toughness to molecular parameters by invoking concepts of craze fibril stability developed for creep. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2355-2369, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 17 (1979), S. 893-897 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 18 (1980), S. 2295-2298 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 1501-1514 
    ISSN: 0887-6266
    Keywords: multicomponent ; latex ; interpenetrating polymer networks ; IPN ; core/shell ; damping ; loss area ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The integrals of the linear loss shear modulus vs. temperature (loss area, LA) and linear tan δ vs. temperature (tan δ area, TA) were characterized for various core/shell latex particles with synthetic rubber, poly(butadiene-stat-styrene) [P (Bd/S), 90/10], and interpenetrating polymer networks (IPN) as the cores. The IPN cores were composed of P(Bd/S) (Tg ≃ - 70°C) and an acrylate based copolymer (Tg around 10°C) for potential impact and damping improvement in thermoplastics. Poly(styrene-stat-acrylonitrile) (SAN, 72/28) was the shell polymer for all these polymers. Under the same loading, for both toughening and damping controls, among the IPN core/shell, blend of separate core/shell, and multilayered core/shell polymers, the IPN core/shell polymers were the best dampers. However, the other core/shell polymers also showed higher LA values than P(Bd/S)/SAN core/shell polymer. A comparison of LA values via a group contribution analysis method was made, the effect of particle morphology and phase continuity on damping being studied. Inverted core/shell latex particles (glassy polymer SAN was synthesized first) showed much higher LA and TA values than normal core/shell ones (rubbery polymer was synthesized first). Models for maximum LA and TA behavior are proposed. The damping property was essentially controlled by the phase miscibility and morphology of the core/shell latex particles. The LA values for each peak in these multiphase materials provided some indication of the several fractional phase volumes. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1501-1514, 1997
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 22 (1984), S. 255-263 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A new chlorination mechanism has been suggested for polyethylene crystals. Based on electron microsocopy and infrared spectroscopy of chlorinated high-density polyethylene single crystals, it is proposed that beyond the initial chlorination of the lamellae surfaces, which accounts for only 2-3% chlorine uptake, the reaction proceeds through the lamellar side faces from the periphery inward. Thus at intermediate degrees of chlorination two major phases coexist: the undamaged interior regions of the lamellae and the surrounding chlorinated material. This mechanism differs from that of oxidative degradation, and also from the generally Accepted mechanism of chlorination. Rather than proceeding through the reacted fold surface into the crystalline core, it is proposed that the direction of chemical attack is prependicular to that suggested previously. This mechanism probably describes any chemically nondestructive attack on the crystalline regions of polymers in general.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...