Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • Fertiliser  (1)
  • grass pea  (1)
  • 1
    ISSN: 1432-0789
    Keywords: Excreta ; Fertiliser ; Microbial biomass ; Nitrogen ; Silvopastoral
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This paper describes a field study to assess the effect of increasing the frequency of split applications of N fertiliser on the pattern of plant uptake, soil N availability, and microbial biomass C and N. Measurements were taken during the growing season in different positions relative to young trees (Prunus avium L.) in an upland silvopastoral system in its first year after establishment. At fertiliser rates of 72 and 144 kg ha-1 N applied as NH4NO3, increasing the number of split applications increased N uptake by the pasture. Mineral forms of soil N measured 2 weeks after application indicated that residual NH inf4 sup+ -N and total mineral N were also greater in this treatment on certain dates. Soil NO inf3 sup- -N was positively correlated with the soil moisture content, and nitrification reached a maximum in early May and declined rapidly thereafter except within the herbicide-treated areas around the trees where soil moisture had been conserved. Results of the study suggest that high NO inf3 sup- -N in herbicide-treated areas was probably caused by mineralisation of grass residues and low uptake by the tree rather than by preferential urine excretion by sheep sheltering beside the trees. Mean microbial biomass C and N values of 894 and 213 kg ha-1, respectively, were obtained. Microbial C was slightly increased by the higher frequency of split applications at 144 kg ha-1 N and was probably related to the greater herbage production with this treatment. Microbial N was not significantly affected by the N treatments. Both microbial biomass C and N increased during the growing season, resulting in the net immobilisation of at least 45 kg ha-1 N which was later released during the autumn.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5060
    Keywords: flower colour ; grass pea ; inheritance ; Lathyrus sativus ; neurotoxin (ODAP or BOAA)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A strong epidemiological association is known to exist between the consumption of grass pea and lathyrism. A neurotoxin, β-N-Oxalyl-L-α, β-diaminopropanoic acid (ODAP) has been identified as the causative principle. This study was undertaken to investigate the mode of inheritance of the neurotoxin ODAP, flower and seed coat colour in grass pea. Five grass pea lines with low to high ODAP concentration were inter-crossed in all possible combinations to study the inheritance of the neurotoxin. Parents, F1 and F2 progenies were evaluated under field condition and ODAP analyzed by an ortho-phthalaldehyde spectrophotometric method. Many of the progenies of low x low ODAP crosses were found to be low in ODAP concentration indicating the low ODAP lines shared some genes in common for seed ODAP content. The F1 progenies of the low ODAP x high ODAP crosses were intermediate in ODAP concentration and the F2 progenies segregated covering the entire parental range. This continuous variation, together with very close to normal distribution of the F2 population both of low x low and low x high ODAP crosses indicated that ODAP content was quantitatively inherited. Reciprocal crosses, in some cases, produced different results indicating a maternal effect on ODAP concentration. Blue and white flower coloured lines of grass pea were inter-crossed to study the inheritance of flower colour. Blue flower colour was dominant over the white. The F2 progenies segregated in a 13:3 ratio indicating involvement of two genes with inhibiting gene interactions. The gene symbol LB for blue flower colour and LW for white flower colour is proposed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...