Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 16 (1993), S. 66-70 
    ISSN: 1432-0789
    Keywords: VA mycorrhiza ; Glomus intraradices ; Hyphal N transport ; Cucumis sativus ; 15N recovery ; Root compartment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Transport of N by hyphae of a vesicular-arbuscular mycorrhizal fungus was studied under controlled experimental conditions. The N source was applied to the soil as 15NH inf4 sup+ or 15NO inf3 sup- . Cucumis sativus was grown for 25 days, either alone or in symbiosis with Glomus intraradices, in containers with a hyphal compartment separated from the root compartment by a fine nylon mesh. Mineral N was then applied to the hyphal compartment as 15NH inf4 sup+ or 15NO inf3 sup- at 5 cm distance from the root compartment. Soil samples were taken from the hyphal compartment at 1, 3 and 5 cm distance from the root compartment at 7 and 12 days after labelling, and the concentration of mineral N in the samples was measured from 2 M KCl extracts. Mycorrhizal colonization did not affect plant dry weight. The recovery of 15N in mycorrhizal plants was 38 or 40%, respectively, when 15NH inf4 sup+ or 15NO inf3 sup- was applied. The corresponding values for non-mycorrhizal plants were 7 and 16%. The higher 15N recovery observed in mycorrhizal plants than in non-mycorrhizal plants suggests that hyphal transport of N from the applied 15N sources towards the host plant had occurred. The concentration of mineral N in the soil of hyphal compartments was considerably less in mycorrhizal treatments than in controls, indicating that the hyphae were able to deplete the soil for mineral N.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 162 (1994), S. 31-37 
    ISSN: 1573-5036
    Keywords: homogeneity of labelling ; mineralization ; mobile nylon bag ; ryegrass hay ; sheep manure ; water-soluble N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A sheep was fed on15N-labelled ryegrass hay during a period of 9 days in order to obtain15N-labelled manure. After 9 days of feeding, the total N in faeces contained 3.70 atom %15N excess, which was equivalent to 82% of the15N enrichment of the hay N. The easily-decomposable fraction of the faecal N was less labelled (2.89 atom %15N excess) than the slowly-decomposable fraction. The15N enrichment of mineralized faecal N did not change significantly during 32 weeks of incubation in sand. About 25% of the faecal N was water-soluble. This N had a higher15N enrichment than the total faecal N, indicating that a part of the water-soluble N was indigestible feed N. The faeces contained only small amounts of NH 4 + -N, which had a15N enrichment similar to the15N enrichment of N mineralized during incubation in sand. It is suggested that the labelled faecal N obtained after a few days of feeding on labelled feed could be divided in two N pools: A decomposable N fraction (about 60%) with a15N enrichment similar to the enrichment of N mineralized in sand (2.89 ± 0.09 atom %15N excess), and a very slowly-decomposable N fraction (about 40%) with a15N enrichment similar to that of the feed (4.52 atom %15N excess).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: animal manure ; immobilization ; leaching ; mineralization ; N-balance ; ryegrass ; spring barley
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The fate of nitrogen from15N-labelled sheep manure and ammonium sulfate in small lysimeters and plots in the field was studied during two growth seasons. In April 1991,15N-labelled sheep faeces (87 kg N ha−1) plus unlabelled (NH4)2SO4 (90 kg N ha−1), and (15NH4)2SO4 (90 kg N ha−1) were each applied to three soils; soil 1 (100% soil + 0% quartz sand), soil 2 (50% soil + 50% quartz sand) and soil 3 (25% soil + 75% quartz sand). The lysimeters were cropped with spring barley (Hordeum vulgare L.) and undersown ryegrass (Lolium perenne L.). The barley crop recovered 16–17% of the labelled manure N and 56% of the labelled (NH4)2SO4-N. After 18 months 30% of the labelled manure N and 65% of the labelled (NH4)2SO4-N were accumulated in barley, the succeeding ryegrass crop and in leachate collected below 45 cm of soil, irrespective of the soil-sand mixture. Calculating the barley uptake of manure N by difference of N uptake between manured and unmanured soils, indicated that 4%, 10% and 14% of the applied manure N was recovered in barley grown on soil-sand mixtures with 16%, 8% and 4% clay, respectively. The results indicated that the mineralization of labelled manure N was similar in the three soil-sand mixtures, but that the manure caused a higher immobilization of unlabelled ammonium-N in the soil with the highest clay content. Some of the immobilized N apparently was remineralized during the autumn and the subsequent growth season. After 18 months, 11–19% of the labelled manure N was found in the subsoil (10–45 cm) of the lysimeters, most of this labelled N probably transported to depth as organic forms by leaching or through the activities of soil fauna. In unplanted soils 67–74% of the labelled manure N was recovered in organic form in the 0–10 cm soil layer after 4 months, declining to 55–64% after 18 months. The lowest recovery of labelled N in top-soil was found in the soil-sand mixture with the lowest clay content. The mass balance of15N showed that the total recovery of labelled N was close to 100%. Thus, no significant gaseous losses of labelled N occurred during the experiment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5036
    Keywords: 15N ; Cucumis sativus ; Glomus intraradices ; hyphal N transport ; plant N status ; VA mycorrhiza
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Cucumis sativus L. cv. Aminex (F1 hybrid) was grown alone or in symbiosis with Glomus intraradices Schenck and Smith in containers with two hyphal compartments (HCA and HCB) on either side of a root compartment (RC) separated by fine nylon mesh. Plants received a total of either 100, 200 or 400 mg N which were applied gradually to the RC during the experiment. 15N was supplied to HCA 42 d after plating, at 50 mg 15NH4 +-N kg−1 soil. Lateral movement of the applied 15N towards the roots was minimized by using a nitrification inhibitor and a hyphal buffer compartment. Non-mycorrhizal controls contained only traces of 15N after a 27 d labelling period irrespective of the amount of N supplied to the RC. In contrast, 49, 48 and 27% of the applied 15N was recovered in mycorrhizal plants supplied with 100, 200 and 400 mg N, respectively. The plant dry weight was increased by mycorrhizal colonization at all three levels of N supply, but this effect was strongest in plants of low N status. The results indicated that this increase was due partly to the improved inflow of N via the external hyphae. Root colonization by G. intraradices was unaffected by the amount of N supplied to the RC, while hyphal length increased in HCA compared to HCB. Although a considerable 15N content was detected in mycorrhizal roots adjacent to HCB, only insignificant amounts of 15N were found in the external hyphae in HCB. The external hyphae depleted the soil of inorganic N in both HCA and HCB, while the concentration of soil mineral N was still high in non-mycorrhizal containers at harvest. An exception was plants supplied with 400 mg N, where some inorganic N was present at 5 cm distance from the RC in HCA. The possibility of a regulation mechanism for hyphal transport of N is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...