Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 44 (1995), S. 239-264 
    ISSN: 1573-4889
    Keywords: oxidation ; carburization ; sulfidation ; scaling ; internal precipitation ; diffusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Scaling reactions between pure metals and multiple oxidant gases are reviewed briefly. It is recognized that elemental oxidant activities are usually so low that the actual reactant species are heteronuclear molecules such as SO2, CO2, etc. The formation of duplex, sulfide-oxide scales on iron and manganese, even when sulfide is unstable with respect to oxide, is attributed to direct reaction with SO2. The persistence of the metastable sulfide is due to its preservation by the rapidly growing scale. The reaction of pure chromium with a number of mixed gases is also discussed. The continued formation of carbides and nitrides beneath an external Cr2O3 scale layer indicates that the latter material is permeable to gas species. Interaction among different gas species is observed, and is attributed to selective adsorption on internal surfaces within the chromium oxide. New work on the reaction of alloys with mixed gases is reported. Several austenitic heat-resistant alloys were exposed at 1000°C to gases containing one, two or all of the oxidants carbon, sulfur and oxygen. Gases containing two or more oxidants produced multiple zones of internal precipitation. The precipitates were chromium-rich oxides, sulfides and carbides arranged in order of thermodynamic stability: oxides beneath the external scale, carbides deepest within the alloys and sulfides in an intermediate zone overlapping the oxide zone. Each precipitate zone widened according to parabolic kinetics. This finding confirms the as yet untested prediction made by J. L. Meijering in 1971. However, the rate at which a particular zone grows changes according to presence of other oxidants. Interactions between the oxidants can be large and reaction rates are currently not predictable.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 13 (1979), S. 437-456 
    ISSN: 1573-4889
    Keywords: Fe-Cr ; oxidation ; kinetics ; oxide morphology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Ferritic polycrystalline Fe-24 wt.% Cr was oxidized in pure oxygen at 190 ≤ T≤490° C and pressures in the range 5.3×10−2–13.3 Pa for periods of up to 5 hr. The reaction proceeded in three stages. An initial period of accelerating rate was accompanied by oxide island nucleation and growth. Following island coalescence the rate was approximately logarithmic at low temperatures and somewhat slower than parabolic at high temperatures. Rate control during this period was thought to be due to mass transport through the oxide grain boundaries left by the island impingement process. During these first two stages the oxide formed was γ-M2O3 with possibly some spinel. The final stage of reaction involved the appearance of α-M2O3 on the outer oxide surface and a substantial slowing of the oxidation rate due to the low diffusivity in this phase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 36 (1991), S. 157-174 
    ISSN: 1573-4889
    Keywords: bixbyite ; iron-chromium-manganese alloys ; spinel ; oxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The oxidation of nine ternary iron-chromium-manganese alloys was studied at 900°C in an oxygen partial pressure of 26.7 kPa. The manganese concentration was set at 2, 6, and 10 wt. %, and chromium at 5, 12, and 20 wt. %. The scales formed on the low-chromium alloys consisted of (Mn,Fe)2O3, α-Fe2O3, and Fe3O4. These alloys all exhibited internal oxidation and scale detachment upon cooling. The scales formed on the higher-chromium alloys were complicated by nodule formation. Initially, these scales had an outer layer of MnCr2O4 with Cr2O3 underneath, adjacent to the alloy. With the passage of time, however, nodules formed, and the overall reaction rate increased. This tendency was more marked at higher manganese contents. Although these alloys contained a high chromium content, the product chromia scale usually contained manganese. It was concluded that the presence of manganese in iron-chromium alloys had an adverse effect on the oxidation resistance over a wide range of chromium levels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...