Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1432-072X
    Schlagwort(e): Key wordsCandida tropicalis ; SNF1 ; Glucose ; repression ; Peroxisome ; n-Alkane
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract SNF1 of Saccharomyces cerevisiae is an essential gene for the derepression of glucose repression. A homolog of SNF1 (CtSNF1) was isolated from an n-alkane-assimilating diploid yeast, Candida tropicalis. CtSNF1 could complement the snf1 mutant of S. cerevisiae. The previously published method for introducing the exogenous DNA into C. tropicalis was employed to construct SNF1/ snf1 heterozygote and snf1/snf1 homozygote strains. The successfully constructed SNF1/snf1 heterozygote was named KO-1. Disruption of the second CtSNF1 allele was unsuccessful, suggesting that CtSNF1 might be essential for cell viability. Therefore, in order to control the expression of CtSNF1, a strain (named KO-1G) in which the promoter region of CtSNF1 was replaced with the GAL10 promoter of C. tropicalis was constructed, and the growth of strains KO-1 and KO-1G was compared with that of the parental strain. The growth of strain KO-1 on glucose, sucrose, or acetate did not differ from the growth of the parental strain, but strain KO-1 showed a slight growth retardation on n-alkane. The growth of strain KO-1G on galactose was normal, but the cells stopped growing when transferred to glucose-, acetate-, or n-alkane-containing medium. Northern blot analysis against mRNA from the n-alkane-grown KO-1G strain demonstrated a close relationship between the presence of CtSNF1 mRNA and the growth of the cells, indicating that CtSNF1 is essential for cell viability. Moreover, mRNA levels of isocitrate lyase, which is localized in peroxisomes of C. tropicalis, were significantly affected by the level of CtSNF1 mRNA.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-072X
    Schlagwort(e): Key words Isocitrate lyase ; n-Alkane-utilizable yeast ; Candida tropicalis ; Saccharomyces cerevisiae ; Promoters
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The upstream region of the isocitrate lyase gene (UPR-ICL, 1530bp) of an n-alkane-utilizable yeast, Candida tropicalis, induced gene expression in another yeast, Saccharomyces cerevisiae, when the yeasts were grown on acetate. Surprisingly, UPR-ICL displayed the same regulatory function in the bacterium Escherichia coli when grown on acetate. We determined the interesting nucleotide sequence of UPR-ICL. The deletion analysis of UPR-ICL in both cells revealed the presence of two distinct promoters: one was localized at –394 to –379 and regulated gene expression in S. cerevisiae; the other was located near the initiation codon and regulated gene expression in E. coli. The two promoter sequences were similar, but not identical to regulatory elements that have been previously reported in S. cerevisiae and E. coli, respectively. Accordingly, the possibility of novel regulatory mechanisms could not be excluded. This is an interesting example of the presence of distinct cis-acting regulatory elements responsible for the induction of gene expression in one gene by acetate in both S. cerevisiae and E. coli. Preservation of such promoters through evolution is also discussed.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1432-072X
    Schlagwort(e): Isocitrate lyase ; n-Alkane-utilizable yeast ; Candida tropicalis ; Saccharomyces cerevisiae ; Promoters
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The upstream region of the isocitrate lyase gene (UPR-ICL, 1530bp) of an n-alkane-utilizable yeast, Candida tropicalis, induced gene expression in another yeast, Saccharomyces cerevisiae, when the yeasts were grown on acetate. Surprisingly, UPR-ICL displayed the same regulatory function in the bacterium Escherichia coli when grown on acetate. We determined the interesting nucleotide sequence of UPR-ICL. The deletion analysis of UPR-ICL in both cells revealed the presence of two distinct promoters: one was localized at-394 to-379 and regulated gene expression in S. cerevisiae; the other was tocated near the initiation codon and regulated gene expression in E. coli. The two promoter sequences were similar, but not identical to regulatory elements that have been previously reported in S. cerevisiae and E. coli, respectively. Accordingly, the possibility of novel regulatory mechanisms could not be excluded. This is an interesting example of the presence of distinct cis-acting regulatory elements responsible for the induction of gene expression in one gene by acetate in both S. cerevisiae and E. coli. Preservation of such promoters through evolution is also discussed.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...