Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 11
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 70 (1991), S. 6712-6717 
    ISSN: 1089-7550
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: A novel intense source of 2.45 MeV neutrons is described. Exploratory experiments with deuterated polyethylene fibers in an x-pinch configuration have been performed using 370-kA, 80-ns current pulses. Up to 4.5×108 neutrons per pulse have been produced. Compared to a z pinch, an x pinch produced about the same number of neutrons for the same current, but the x-pinch neutron source may be 1 mm or less in diameter.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 72 (2001), S. 2310-2321 
    ISSN: 1089-7623
    Quelle: AIP Digital Archive
    Thema: Physik , Elektrotechnik, Elektronik, Nachrichtentechnik
    Notizen: We present a general analysis of possible variants of refractive index gradient (RING) diagnostics with a laser beam probe. Using a differential bicell photodiode as a detector, the sensitivity, dynamic range, and geometric restrictions of RING deflectometry have been found for lensless, one lens, and "three-telescope" optical schemes. The three-telescope method is found to be the most flexible and easily aligned. If the refracted/deflected laser beam cross section in the back focal plane of the output lens is also recorded using a fast framing camera, measurements of the beam deflection and its spatial frequency spectrum after passing through the refractive medium can be obtained simultaneously. A general relation is presented between the Fourier transform of a Gaussian beam by the output lens and the spatial frequency spectrum of the inhomogeneities. From these considerations, we present the specific design of a RING diagnostic for study of anode plasma evolution in a magnetically insulated ion diode on the Cornell Beam Research Accelerator (COBRA) (800 kV, 80 ns pulse). The maximum density gradient was found to be located about 0.4 mm from the anode surface at the peak of the diode voltage pulse. The electron density at this position was about 2×1015 cm−3. The transverse spatial frequency distribution of the probe laser beam after passing through the anode plasma was recorded using the optical Fourier transform technique. This experiment demonstrates that the combined integrated deflection. (RING) and Fourier transform optical techniques can give a great deal of information about this thin (∼1 mm) anode plasma layer. © 2001 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 71 (2000), S. 4409-4414 
    ISSN: 1089-7623
    Quelle: AIP Digital Archive
    Thema: Physik , Elektrotechnik, Elektronik, Nachrichtentechnik
    Notizen: A new laser-driven atomic-probe-beam diagnostic (LAD) is proposed for local, time-resolved measurements of electric field and ion dynamics in the accelerating gap of intense ion beam diodes. LAD adds new features to previous Stark-shift diagnostics which have been progressively developed in several laboratories, from passive observation of Stark effect on ion species or fast (charge-exchanged) neutrals present naturally in diodes, to active Stark atomic spectroscopy (ASAS) in which selected probe atoms were injected into the gap and excited to suitable states by resonant laser radiation. The LAD scheme is a further enhancement of ASAS in which the probe atoms are also used as a local (laser-ionized) ion source at an instant of time. Analysis of the ion energy and angular distribution after leaving the gap enables measurement, at the chosen ionization location in the gap, of both electrostatic potential and the development of ion divergence. Calculations show that all of these quantities can be measured with sub-mm and ns resolution. Using lithium or sodium probe atoms, fields from 0.1 to 10 MV/cm can be measured. © 2000 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 1555-1563 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: X-ray backlighter images (radiographs) of current-induced explosions of 12.7–25 μm diam Al wires have been used to determine the expansion rate and internal structure of the dense wire cores. The current rises to 1–4.5 kA per wire in 350 ns, but voltage and current measurements show that the energy driving the explosion is deposited resistively during the first 40–50 ns, when the current is only a few hundred amperes per wire. A voltage collapse then occurs as a result of plasma formation around the wire, effectively terminating the energy deposition in the wire core. High-resolution radiographs obtained over the next 150–200 ns show the expanding wire cores to have significant axial stratification and foamlike structures with ∼10 μm scale lengths over most of the wire length before they disappear in the expansion process. The expansion rate of the portion of the wire cores that is dense enough to be detected by radiography is 1.4–2 μm/ns commencing approximately 25 ns after the moment of the voltage collapse. (The sensitivity limit is equivalent to 0.2 μm of solid density Al.) By 250 ns after the start of the current pulse, the detectable wire core diameter is 250 μm, but it contains only about 30% of the initial wire material. © 2000 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 2840-2846 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The dynamics of the dense plasma near the cross point of an X pinch has been investigated using 1 ns x-ray backlighting images at different moments relative to the start of 100 ns [full width at half maximum (FWHM)] 200 kA current pulses. If the two metal wires are fine enough (e.g., 10 μm W or 17.5 μm Mo) to form a pinch at the cross point, accompanied by an x-ray burst, with the available current pulse, then the images show three stages of development: a radial explosion/expansion phase; an implosion during which a dense Z pinch of 200–300 μm length forms at the cross point together with plasma jets which move axially away from that point; and a breaking up of the Z pinch, coincident in time with one or two x-ray bursts, after which a 300 μm gap opens up. For W, the backlighter minimum sensitivity is 1017/cm2 areal density, and the dense Z pinch is estimated to have a volume density close to 1021/cm3. Shock waves appear to be expanding at about 50 μm/ns from the end points of the collapsing Z pinch, where the plasma was the most dense. © 1999 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Wire-array Z-pinch implosion experiments begin with wire heating, explosion, and plasma formation phases that are driven by an initial 50–100 ns, 0–1 kA/wire portion of the current pulse. This paper presents expansion rates for the dense, exploding wire cores for several wire materials under these conditions, with and without insulating coatings, and shows that these rates are related to the energy deposition prior to plasma formation around the wire. The most rapid and uniform expansion occurs for wires in which the initial energy deposition is a substantial fraction of the energy required to completely vaporize the wire. Conversely, wire materials with less energy deposition relative to the vaporization energy show complex internal structure and the slowest, most nonuniform expansion. This paper also presents calibrated radial density profiles for some Ag wire explosions, and structural details present in some wire explosions, such as foam-like appearance, stratified layers and gaps. © 2001 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Bright, ∼1 μm x-ray sources (micropinches) produced within exploding wire X pinches are found to be near solid density and ∼1 keV electron temperature. For example, with a Ti X pinch, a 90 ps lifetime, 1.5–1.8 keV electron temperature, ∼1023/cm3 electron density plasma was observed. These plasma characteristics were determined using time-resolved x-ray spectra produced by 2- and 4-wire X pinches and collected by an x-ray streak camera with 〈10 ps time resolution. Together with a spherically bent mica crystal spectrograph, the streak camera recorded the 1–10 keV radiation emitted from X pinches made from different wire materials. Some spectra were dominated by continuum and others by line radiation. Spectral features varied on time scales ranging from 10 to 300 ps, depending on the wire material. Results are presented that demonstrate the necessity of time-resolved data for determining plasma conditions from micropinch x-ray spectra. © 2002 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 1305-1318 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Experimental results are presented from studies of the dynamics of X-pinch plasmas, formed using two fine wires that cross and touch at a single point (in the form of an X) as the load of a high current pulser. High-resolution (sub-ns in time and 2–3 μm in space) x-ray radiographs of X pinches driven by current pulses that rise to 200–250 kA peak current in 40 ns show that ≤300 μm long Z pinches form in the region of the original wire cross-point a few ns prior to the first sub-ns intense x-ray bursts that are characteristic of an X pinch. The Z pinches implode to ≤10 μm diam and then appear to develop gaps in the radiographic images in one or two places, coincident in time with the x-ray burst(s). The emission spectra of the intense x-ray bursts from different wire materials indicate electron temperatures of 500–1300 eV and densities in excess of 1022/cm3. © 2001 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 429-432 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Substantial increases are reported in the expansion rates of exploding, dense wire cores under conditions simulating the prepulse phase of wire array z-pinch experiments [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)] using wires with insulating coatings. The insulation apparently allows additional wire heating by delaying the formation of plasma around the wires. Once plasma is formed it terminates significant current flow in the residual wire cores. This effect is demonstrated for 25-μm diameter W and 25-μm diameter Ag wires. © 2000 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 4272-4283 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Calibrated density measurements have been obtained of the coronal plasmas around exploding 7.5–40 μm W wires carrying 15–120 kA per wire for 30–70 ns. X-ray radiographs of the exploding wire plasmas using 2.5–10 keV photons from a Mo wire X-pinch backlighter enabled measurements of areal densities of W ranging from 2×1017/cm2, equivalent to 0.03 μm of solid density W, to about 1019/cm2. The rapidly expanding (few mm/μs) coronal plasmas surrounding the slowly expanding (〈1 mm/μs) residual wire cores have areal densities up to about 2×1018/cm2. Single 7.5 μm wires tested with 100 kA had as much as 90% of the initial wire material in the coronal plasma. Coronal plasma W number densities were estimated to be up to a few times 1018/cm3, while core W densities as low as a few times 1020/cm3 were observed. With linear arrays of four (eight) 7.5 μm wires carrying 30 kA (15 kA)/wire, up to 35% (25%) of the initial W wire material was in the plasma around and between the wires at 46–48 ns after the current started. Preheating the wires to drive off adsorbed gases and hydrocarbons increased the W mass in the coronal plasma and made it more uniform then when wires were not preheated. © 1999 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...