Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    ISSN: 1432-0428
    Keywords: Keywords Diabetic retinopathy ; rat model ; omega-3 fatty acids.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Omega-3 fatty acids exert several important biological effects on factors that may predispose to diabetic retinopathy. Potential pathogenetic mechanisms include platelet dysfunction, altered eicosanoid production, increased blood viscosity in association with impaired cell deformability and pathologic leucocyte/endothelium interaction. Therefore, we tested whether a 6-month administration of fish oil (750 mg Maxepa, 5 times per week), containing 14 % eicosapentaenoic acid (EPA) and 10 % docosahexaenic acid, could inhibit the development of experimental retinopathy of the streptozotocin-diabetic rat. The efficiency of fish oil supplementation was evaluated by measuring EPA concentrations in total, plasma and membrane fatty acids and by measuring the generation of lipid mediators (leukotrienes and thromboxanes). Retinal digest preparations were quantitatively analysed for pericyte loss, and the formation of acellular capillaries. Omega-3 fatty acid administration to diabetic rats resulted in a twofold increase of EPA 20:5 in total fatty acids, and a reduction of the thromboxane2/3 ratio from 600 (untreated diabetic rats) to 50 (treated diabetic rats). Despite these biochemical changes, diabetes-associated pericyte loss remained unaffected and the formation of acellular, occluded capillaries was increased by 75 % in the fish oil treated diabetic group (115.1 ± 26.8; untreated diabetic 65.2 ± 15.0 acellular capillary segments/mm2 of retinal area). We conclude from this study that dietary fish oil supplementation may be harmful for the diabetic microvasculature in the retina. [Diabetologia (1996) 39: 251–255]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1432-0428
    Keywords: Keywords Diabetic retinopathy ; prediction ; lymphocytes ; glycation.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Aims/hypothesis. We investigated whether either the amount of diabetes-induced intracellular oxidative stress or the concentration of hyperglycaemia-induced advanced glycation endproducts is associated with the risk of diabetic retinopathy. Methods. We measured concentrations of the glycoxidation product Ne-(carboxymethyl)lysine and two non-oxidation-dependent advanced glycation endproducts (methylglyoxal-derived and 3-deoxyglucosone-derived) in CD45RA+ T-cells from 21 Type I (insulin-dependent) diabetic patients with and without diabetic retinopathy and from age-matched non-diabetic control subjects. Results. Intracellular concentrations of both oxidation-dependent Ne-(carboxymethyl)lysine and oxidation-independent advanced glycation endproducts were increased in memory T-cells from diabetic patients. Ne-(carboxymethyl)lysine: diabetic median-24 176 arbitrary units/mg protein (95 % confidence interval 18 690–34 099 arbitrary units/mg protein); nondiabetic-9088 arbitrary units/mg protein (confidence interval 6994–10 696 arbitrary units/mg protein; p 〈 0.0001). Methylglyoxal-derived advanced glycation end products: diabetic-5430 arbitrary units/mg protein (confidence interval 3458–13 610); nondiabetic-271 arbitrary units/mg protein (confidence interval 61–760 arbitrary units/mg protein; p 〈 0.0001). 3-Deoxyglucosone-derived advanced glycation end products: diabetic-8070 arbitrary units/mg protein (confidence interval 7049–16 551 arbitrary units/mg protein); nondiabetic-1479 arbitrary units/mg protein (confidence interval 1169–3170; p 〈 0.0001). Only Ne-(carboxymethyl)lysine concentrations, however, inversely correlated with the duration of retinopathy-free diabetes (r = –0.51; p 〈 0.02). Diabetes-dependent Ne-(carboxymethyl)lysine accumulation did not correlate with age, diabetes duration, or averaged glycohaemoglobin concentrations. In vitro experiments wih menadione and lymphocytes confirmed that Ne-(carboxymethyl)lysine concentrations reflect intracellular oxidative stress. Conclusion/interpretation. Monitoring intracellular concentrations of increased oxidative stress in long-lived CD45RA+ lymphocytes by markers such as Ne-(carboxymethyl)lysine possibly identifies a subgroup of patients at high risk for microvascular complications. [Diabetologia (1999) 42: 603–607]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1432-0428
    Keywords: Keywords Advanced glycation end products ; carboxymethyllysine ; retinopathy ; extracellular matrix ; oxidative stress.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Aims/hypothesis. Glycated proteins, formed by reaction of glucose and protein, react further yielding numerous, mostly undefined advanced glycation end products (AGE). The recently characterized imidazolone-type AGE (AG-1) is non-oxidatively formed involving 3-deoxyglucosone whereas some AGEs, particularly Nɛ-(carboxymethyl)lysine (CML), are formed only in the presence of oxygen. Methods. To study the possible contribution of oxidative and non-oxidative AGE formation in the development of diabetic retinopathy antibodies directed against CML-type and imidazolone-type AGEs were characterized by dot blot analysis and used to localize these well-characterized epitops in the retinas from diabetic rats (early course) and from human Type I (insulin-dependent) diabetes mellitus with laser-treated proliferative diabetic retinopathy (late course). Results. In non-diabetic rats CML was moderately positive in neuroglial and vascular structures of non-diabetic rat retinas and increased strongly in diabetic retinas. Anti-imidiazolone antibody staining was strongly positive only in diabetic capillaries. Advanced human diabetic retinopathy showed strong CML-immunolabelling of the entire retina whereas control samples showed moderate staining of neuroglial structures only with the polyclonal CML-antibody. Anti-imidiazolone antibody staining was faint in the inner retina of control sections but were strong throughout the entire diabetic retina. Immunolabelling for the AGE-receptor was congruent with a marker of Müller cells. Conclusion/interpretation. Our data indicate that the oxidatively formed CML is present in non-diabetic retinas as a regular constituent but increases in diabetes both in neuroglial and vascular components. Imidazolone-type AGE are restricted to microvessels and spread during later stages over the entire retina, co-localizing with the expression of AGE-receptor. [Diabetologia (1999) 42: 728–736]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...